Electronic structure of transition-metal chalcogenides and their intercalation compounds

  • W. R. McKinnon
Part of the NATO ASI Series book series (NSSB, volume 172)


Intercalation compounds are solids where host atoms provide a structure into which guest atoms can be inserted. Generally, charge is transferred between the outer orbitals of the guest atoms and the electron bands of the host during intercalation. In the transition-metal chalcogenides, the guest gives up charge to become a positive ion, and the electrons donated by the guests enter the host band structure. Thus the electronic structure of the host should, together with the sites available for the guest ions, determine whether a given guest can be inserted, and to what extent.


Fermi Energy Intercalation Compound Antibonding Orbital Trigonal Prism Extra Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armand. M., 1978, Ph.D. Thesis. Université Scientifique Medical et Institut National Polytechnique de Grenoble. British Columbia.Google Scholar
  2. Bullett, D. W., 1977, Phys. Rev. Lett., 39:664.ADSCrossRefGoogle Scholar
  3. Chevrel, R., and Sergent, M. 1982. in: “Superconductivity in Ternary Compounds, Springer Topics in Current Physics”, O Fischer and M.B. Maple, ed., Springer-Verlag, Berlin. 32:25.Google Scholar
  4. Coehoorn, R., Haas. C., Dijkstra, J., Flipse, C. J. F., de Groot, R. A., and Wold, A., 1987, Phys. Rev. B, 35:6195.ADSCrossRefGoogle Scholar
  5. Dahn. D. C., Carolan, J. F., and Haering, R. R., 1986, Phys. Rev. B, 33:5214.ADSCrossRefGoogle Scholar
  6. Dahn, J. R., and McKinnon, W. R., 1985, Phys. Rev. B, 32:3003.ADSCrossRefGoogle Scholar
  7. Dahn, J. R., McKinnon, W. R., and Coleman, S. T. 1985a, Phys. Rev. B, 31:484.ADSCrossRefGoogle Scholar
  8. Dahn, J. R., McKinnon, W. R., Murray, J. J., Haering, R. R., McMillan, R. S., and Rivers-Bowerman, A. H., 1985b, Phys. Rev. B, 32:3316.ADSCrossRefGoogle Scholar
  9. Doni, E., and Girlanda, R., 1986, in: “Electronic Structure and Electronic Transitions in Layered Materials”, V. Grasso, ed., Riedel, Dordrecht, Pg. 1.Google Scholar
  10. Dubson, M. A., and Holcomb, D. F., 1985, Phys. Rev. B, 32:1955.ADSCrossRefGoogle Scholar
  11. Ehrenreich, H., and Schwartz, L. M., 1976, in: “Solid State Physics”, H. Ehrenreich, F. Seitz, and D. Turnbull, ed., Academic Press, New York, 31:149.Google Scholar
  12. Friedel, J., 1954, Adv. Phys., 3:446.ADSCrossRefGoogle Scholar
  13. Friend, R. H., and Yoffe, A. D., 1987, Adv. Phys., 36:1.ADSCrossRefGoogle Scholar
  14. Goodenough, J. B., 1971, in: “Progress in Solid State Chemistry”, H. Reiss, ed., Pergamon Press, New York, 5:145.Google Scholar
  15. Haas, C., 1975, in: “Crystal Structure and Chemical Bonding in Inorganic Chemistry”, C. J. M. Kooymans and A. Rabenan, eds., North-Holland, Amsterdam, pg. 103.Google Scholar
  16. Haas, C., 1985, J. Solid State Chem., 57:82.ADSCrossRefGoogle Scholar
  17. Heine, V., 1980, Solid State Phys., 35:1.Google Scholar
  18. Hollinger, G., Pertosa, P., Doumerc, J. P., Himpsel, F. J., and Reihl, B., 1985, Phys. Rev. B, 32:1987.ADSCrossRefGoogle Scholar
  19. Huisman, R., De Jonge, R., Haas, C., and Jellinek, F., 1971, J.Solid State Chem., 3:56.ADSCrossRefGoogle Scholar
  20. Kertesz. M., and Hoffman, R., 1984, J. Am. Chem. Soc., 106:3453.CrossRefGoogle Scholar
  21. Johnston, D. C., 1982, Solid State Commun., 43:533.ADSCrossRefGoogle Scholar
  22. Laman. F. C. Matsen, M. W., and Stiles. J. A. R., 1986, J.Electrochern. Soc., 133:2441.CrossRefGoogle Scholar
  23. Mattheiss. L. F. 1973. Phys. Rev. B. 8:3719.ADSCrossRefGoogle Scholar
  24. McKinnon. W. R. and Haering. R. R. 1983, in: “Modern Aspects of Electrochemistry”. R. E. White, J. O’M., Bockris, and B. E. Conway, ed., Plenum, New York, 15:235.CrossRefGoogle Scholar
  25. McKinnon, W. R. and Selwyn, L. S., 1987, Phys. Rev. B 35:7275.ADSCrossRefGoogle Scholar
  26. Molenda, J., 1986, Solid State Ionics, 21:263.CrossRefGoogle Scholar
  27. Murphy, D. W., Di Salvo, F. J., Hull, G. W., and Waszczak, J. V., 1976, Inorg. Chem., 15:17.CrossRefGoogle Scholar
  28. Nohl, H., Klose, W., and Andersen, O. K., 1982, in: “Superconductivity in Ternary Compounds, Springer Topics in Current Physics”, O Fischer and M.B. Maple, ed., Springer-Verlag, Berlin, 32:165.Google Scholar
  29. Perrin, A., Chevrel, R., Sergent, M., and Fischer, O., 1980, J. Solid State Chem., 33:43.ADSCrossRefGoogle Scholar
  30. Py, M. A., and Haering, R. R., 1983, Can. J. Phys., 61:76.ADSCrossRefGoogle Scholar
  31. Py, M. A., and Haering, R. R., 1984, Can. J. Phys., 62:10.ADSGoogle Scholar
  32. Salomon, D., Lerf, A., Biberacher, W., Butz, T., and Saibene, S., 1985, Chem. Phys. Lett., 119:238.ADSCrossRefGoogle Scholar
  33. Sellmyer, D. J., 1978, in: “Solid State Physics”, H. Ehrenreich, F. Seitz, and D. Turnbull, ed., Academic Press, New York, 33:83.Google Scholar
  34. Silbernagel, B. G., and Whittingham, M. S., 1976. J. Chem. Phys., 64:3670.ADSCrossRefGoogle Scholar
  35. Umrigar, C., Ellis, D. E., Wang, D., Krakauer, H., and Posternak, M., 1982, Phys. Rev. B, 26:4935.ADSCrossRefGoogle Scholar
  36. Vellinga, M. B., De Jonge. R. and Haas, C., 1970, J. Solid State Chem., 2:299.ADSCrossRefGoogle Scholar
  37. Wiegers, G. A., 1980. Physica, 99B:151.Google Scholar
  38. Wilson, J. A., and Yoffe, A. D., 1969, Adv. Phys., 18:193.ADSCrossRefGoogle Scholar
  39. Yvon, K., 1979, in: “Current Topics in Materials Science”, E. Kaldis, ed., North-Holland, Amsterdam, 3:53.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • W. R. McKinnon
    • 1
  1. 1.Solid State Chemistry, Division of ChemistryNational Research Council of CanadaOttawaCanada

Personalised recommendations