Reactivity of low dimensional transition metal derivatives towards cationic intercalation chemistry

  • Jean Rouxel
Part of the NATO ASI Series book series (NSSB, volume 172)


Cationic intercalation compounds are usually formed through a reversible redox process involving a guest species and a host. 1a, b, c, d These topochemical ion-electron transfer processes2 were initially developped in the case of two dimensional host structures, which actually justified utterly the name of intercalation used for these reactions. Later on, and due to the variety of fundamental topics involved and to the numerous possible applications, the intercalation concept was extended to reactions concerning three dimensional channel structures. However, in that case, there will be strongly limiting geometrical constraints in connection with a rigid framework. The ideal host structure would be, on the contrary, a deformable one, able to adapt itself to each type of ions, which was precisely the case of low dimensional solids. Indeed, two-dimensional and one-dimensional structures remain basically the ideal host structures when one wants to better understand the intercalation reaction itself. The present paper will consequently deal with such materials like transition metal di- or trichalcogenides, halides and oxihalides. A particular attention will be paid to the electronic exchange between guest and host, this aspect being sometimes somewhat neglected as compared to purely geometrical topics. The reverse of the intercalation process will be also considered in this contribution. It leads to a modification of already known host structures, or to new ones, which are generally metastable and very reactive.


Octahedral Site Solid State Ionic Discharge Curve Band Structure Calculation Host Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1a.
    Intercalation in layered Materials, M.S. Dresselhaus Ed. Nato Asi series B148, Plenum Press, New York 1987.Google Scholar
  2. b.
    J. Rouxel in: “Intercalated Layered Materials”, F. Levy Ed., D. Reidel, Dordrecht (1979) p.201.CrossRefGoogle Scholar
  3. c.
    Intercalation Chemistry, M.S. Wittingham, A. Jacobson, Ed. Academic Press, New York (1982).Google Scholar
  4. d.
    R. Schöllhorn in “Inclusion Compounds” Eds J.L. Atwood, J.E.D. Davies and D.D. MacNicol vol. 1, Academic Press, New York (1984).Google Scholar
  5. 2.
    R. Schöllhorn, Angew Chem. Int. Ed. Engl., 19:983 (1980).CrossRefGoogle Scholar
  6. 3.
    E. Mosser and W.B. Pearson, Acta Cryst., 12:1015 (1959).CrossRefGoogle Scholar
  7. 4.
    C. Delmas, J.J. Braconnier, A. Maazaz and P. Hagenmuller, Rev. Chim. Min., 19:343 (1982).Google Scholar
  8. 5.
    L.S. Ramsdell, Am. Mineralogist, 32:64 (1947).Google Scholar
  9. 6.
    F. Jellinek in “Inorganic Sulfur Chemistry” G. Nickless Ed. Elsevier Amsterdam (1968).Google Scholar
  10. 7.
    A. Meerschaut and J. Rouxel, J. Less Common Metals, 39:498 (1975).Google Scholar
  11. 8.
    R. Hoffmann, S. Shaik, J.C. Scott, M.H. Whangbo, M.J. Poshee, J. Solid State Chem., 34:263 (1980).ADSCrossRefGoogle Scholar
  12. 9.
    W. Klingen, R. Ott and H. Hahn, Z. Anorg. Allg. Chem., 396:271 (1973).CrossRefGoogle Scholar
  13. 10.
    R. Brec, Sol. State Ionics, 22:3 (1986).CrossRefGoogle Scholar
  14. 11.
    R. Clément, J. Chem. Soc, Chem. Comm., 647 (1980).Google Scholar
  15. 12.
    J. Rouxel and P. Palvadeau, Rev. Chim. Min., 19:317 (1982).Google Scholar
  16. G.A. Fatseas, P. Palvadeau and J.P. Venien, J. Solid State Chem., 51:17 (1984).ADSCrossRefGoogle Scholar
  17. L. Coic, P. Palvadeau, F. Menil, L. Fournes, Mat. Res. Bull., 16:1055 (1981)CrossRefGoogle Scholar
  18. 13a.
    R.H. Herber and Y. Maeda, Inorg. Chem., 19:3411 (1980).CrossRefGoogle Scholar
  19. b.
    R.H. Herber and R.A. Cassel, Inorg. Chem., 21:3713 (1982).CrossRefGoogle Scholar
  20. 14.
    P. Palvadeau, J.P. Venien and G. Calvarin, C.R., series II, 292:1259 (1981).Google Scholar
  21. 15.
    J.F. Berar, G. Calvarin and D. Weigel, J. Appl. Cryst., 13:201 (1980).CrossRefGoogle Scholar
  22. 16.
    F. Kanamaru, M. Shimada and M. Koizumi, Chem. Lett., 373 (1974).Google Scholar
  23. 17.
    J.P. Audière, R. Clément, Y. Matthey and G. Mazières, Physica B, 99:133 (1980).CrossRefGoogle Scholar
  24. 18.
    F. Kanamaru, M. Shimada, M. Koizumi, M. Takano and T. Takada, J. Solid State Chem., 7:297 (1973).ADSCrossRefGoogle Scholar
  25. 19.
    T.R. Halbert, D.C. Johnston, L.E.M. McCandlish, A. Thompson, J.C. Scanlon, J.A. Dumesic, Physica B+C, 99(1-4):128 (1980).ADSCrossRefGoogle Scholar
  26. 20.
    B.A. Averill, S.M. Kanzlarich, B.K. Tes and J. Faber, Mol. Cryst. Liq. Cryst., 120:259 (1985).CrossRefGoogle Scholar
  27. 21.
    A. Armand, L. Coïc, P. Palvadeau and J. Rouxel, J. Power Sources, 3:137 (1978).ADSCrossRefGoogle Scholar
  28. 22.
    R. Steffen and R. Schöllhorn, Solid State Ionics, 22:31 (1986).CrossRefGoogle Scholar
  29. 23.
    R. Chevrel, M. Sergent, J. Solid State Chem., 3:8807 (1971).Google Scholar
  30. 24.
    R. Schöllhorn, Angew. Chem. Int. Ed. Engl., 19:983 (1980).CrossRefGoogle Scholar
  31. 25.
    B.C.H. Steele, G.J. Dudley, K.Y. Cheung, Proceeding 2nd Int. Meeting Sol. Electrolytes St Andrews (1978) aabstract 7-3.Google Scholar
  32. 26.
    K. Yvon, “Current Topics in Material Science” Kaldis Ed., North Holland (1979) vol. II.Google Scholar
  33. 27.
    R. Schöllhorn, M. Kumpers, J.O. Besenhard, Mat. Res. Bull., 12:781 (1977).CrossRefGoogle Scholar
  34. 28.
    J.M. Tarascon, F. Di Salvo, D.W. Murphy, G.W. Hull, E.A. Rietman, J.V. Waszczak, J. Solid State Chem., 34:204 (1984).ADSCrossRefGoogle Scholar
  35. 29.
    W.R. McKinnon, J.R. Dhan, Phys. Rev. B, 31:3084 (1985).ADSCrossRefGoogle Scholar
  36. 30.
    E. Gocke, R. Schöllhorn, G. Aselmann and W. Müller-Warmuth, Inorg. Chem, in press.Google Scholar
  37. 31.
    S.T. Coleman, W.R. McKinnon, J.R. Dahn, Phys. rev. B, 29:4147 (1984).ADSCrossRefGoogle Scholar
  38. 32.
    R. Schöllhorn, Personal communication and ref 30.Google Scholar
  39. 33.
    J. Rouxel, P. Molinie, L.H. Top, J. Power Sources, 9:345 (1985).CrossRefGoogle Scholar
  40. 34.
    S. Wittingham, Personal communication.Google Scholar
  41. 35.
    W.P.F.A. Omloo and F. Jellinid, J. Less Common Metals, 20:121 (1970).CrossRefGoogle Scholar
  42. 36.
    J. Rouxel and R. Brec, Annual Review Mat. Science, 16:137 (1986).ADSCrossRefGoogle Scholar
  43. 37.
    A. Ben Salem, A. Meerschaut, M.H. Whangbo, J. Rouxel, to be published.Google Scholar
  44. 38.
    J. Molenda, Solid State Ionics, 21:263 (1986).CrossRefGoogle Scholar
  45. 39.
    A. Meerschaut, P. Gressier, L. Guémas and J. Rouxel, Mat. Res. Bull. 16:1035 (1981).CrossRefGoogle Scholar
  46. R.J. Cava, V.L. Himes, A.D. Mighell and R.S. Roth, Phys. Rev. B, 24-6:3634 (1981).ADSCrossRefGoogle Scholar
  47. 40.
    M.H. Whangbo, R.J. Cava, F.J. Di Salvo and R.M. FLeming, Sol. State Comm., 43:277 (1982).ADSCrossRefGoogle Scholar
  48. 41.
    T.J. Hibma, J. Solid State Chem., 34:94 (1980).ADSGoogle Scholar
  49. 42.
    A. Le Blanc, M. Danot, L. Trichet and J. Rouxel, Mat. Res. Bull., 9:191 (1974).CrossRefGoogle Scholar
  50. 43.
    J. Rouxel, J. Solid State Chem., 17:223 (1976).ADSCrossRefGoogle Scholar
  51. 44.
    C. Fouassier, C. Delmas and P. Hagenmuller, Mat. Sci. Eng., 31:2 (1977).Google Scholar
  52. 45.
    A.H. Thompson, C.R. Symon, Solid State Ionics, 3-4:175 (1981).CrossRefGoogle Scholar
  53. 46.
    J.M. Tarascon, F.J. Di Salvo, C.H. Chen, J.P. Caroll, M. Walsh, L. Rupp, J. Solid State Chem., 58:290 (1985).ADSCrossRefGoogle Scholar
  54. 47.
    P. Deniard (in this volume).Google Scholar
  55. 48.
    D.W. Murphy, F.J. Di Salvo, G.W. Hull and J.V. Waszczak, Inorg. Chem., 15:17 (1976).CrossRefGoogle Scholar
  56. 49.
    M.S. Whittingham and F. Gamble, Mat. Res. Bull., 10:363 (1975).CrossRefGoogle Scholar
  57. 51.
    P. Molinie, L. Trichet, J. Rouxel, C. Berthier, Y. Chabre and P. Segransan, J. Phys. Chem. Solids, 45-1:105 (1984).ADSCrossRefGoogle Scholar
  58. 52.
    M.H. Whangbo, L. Trichet and J. Rouxel, Inorg. Chem., 24:1824 (1985).CrossRefGoogle Scholar
  59. 53.
    D.W. Murphy and F.A. Trumbore, J. Crystal Growth 39:135 (1977).ADSGoogle Scholar
  60. 54.
    R.R. Chianelli and M.B. Dines, Inorg. Chem., 14(10):2417 (1975).CrossRefGoogle Scholar
  61. 55.
    J.L. Hodeau, M. Marezio, C. Roucau, R. Ayroles, A. Meerschaut, J. Rouxel and P. Monceau, J. Phys. C, 11:4117 (1978).ADSCrossRefGoogle Scholar
  62. 56.
    A. Ben Salem, A. Meerschaut, J. Rouxel, M. Evain and M.H. Whangbo, submitted Sol. State Ionics.Google Scholar
  63. 57.
    M.H. Whangbo and P. Gressier, Inorg. Chem., 23:1305 (1984).CrossRefGoogle Scholar
  64. 58.
    D.W. Murphy and P.A. Christian, Science, 205:651 (1979).ADSCrossRefGoogle Scholar
  65. 59.
    D.W. Murphy, J.N. Carides, F.J. Di Salvo, C. Cros, J.V. Waszczak, Mat. Res. Bull., 12:825 (1977).CrossRefGoogle Scholar
  66. 60.
    P. Gard, C. Sourisseau, G. Ouvrard and R. Brec, Solid State Ionics, 20:231 (1986).CrossRefGoogle Scholar
  67. 61.
    A. Le Méhauté, R. Brec, A. Dugast and J. Rouxel, Solid State Ionics, 314:185 (1981).Google Scholar
  68. 62.
    L. Blandeau, G. Ouvrard, Y. Calage, R. Brec and J. Rouxel, to be published.Google Scholar
  69. 63.
    J.B. Goodenough, M.M. Thackeray, W.I.F. David, P.G. Bruce, Rev. Chim. Min., 21:435 (1984).Google Scholar
  70. 64.
    R. Schöllhorn and A. Payer, Angew. Chem. Int. Ed. English, 22:905 (1986).CrossRefGoogle Scholar
  71. 65.
    S. Sinha, D.W. Murphy, Solid State Ionics, 20:81 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Jean Rouxel
    • 1
  1. 1.Laboratoire de Chimie des Solides, U.A. CNRS no 279Université de NantesNantes Cédex 03France

Personalised recommendations