Theoretical characterization of the electronic structure of phthalocyanine and related macrocycles

  • E. Ortí
  • J. L. Brédas
Part of the NATO ASI Series book series (NSSB, volume 172)


Valence Effective Hamiltonian (VEH) calculations are used to characterize the electronic structure of phthalocyanine-type macrocycles which give rise to “molecular metals” after doping. The theoretical estimates for photoelectron binding energies and optical transitions in the valence region are compared with available data, showing good overall agreement. The main features of those electronic properties of importance with regard to conductivity are discussed in terms of structural changes.


High Occupied Molecular Orbital Occupied Orbital Double Zeta High Occupied Molecular Orbital Level Valence Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1](a)
    Permanent address: Departamento de Química Física, Facultad de Química, Universidad de Valencia, Burjassot (Valencia), Spain.Google Scholar
  2. (b).
    Chercheur Qualifié of the Belgian National Fund for Scientific Research (FNRS).Google Scholar
  3. [2]
    For recent reviews see: (a) J. Simon, and J.-J. André, “Molecular Semiconductors”, J.M. Lehn, and Ch.W. Rees, eds., Springer-Verlag, Berlin, 1985.CrossRefGoogle Scholar
  4. (b).
    T.J. Marks, Science, 227, 881 (1985).ADSCrossRefGoogle Scholar
  5. [3]
    T. Inabe, T.J. Marks, R.L. Burton, J.W. Lyding, W.J. McCarthy, C.R. Kannewurf, G.M. Reisner, and F.H. Herbstein, Solid State Commun., 54, 501 (1985).ADSCrossRefGoogle Scholar
  6. [4]
    B.M. Hoffman, and J. Ibers, Acc. Chem. Res., 16, 15 (1983).CrossRefGoogle Scholar
  7. [5]
    G. Nicolas, and Ph. Durand, J. Chem. Phys., 70, 2020 (1979).ADSCrossRefGoogle Scholar
  8. G. Nicolas, and Ph. Durand, J. Chem. Phys., 72, 453 (1980).ADSCrossRefGoogle Scholar
  9. [6]
    J.L. Brédas, B. Thémans, and J.M. André, J. Chem. Phys., 78, 6137 (1983).ADSCrossRefGoogle Scholar
  10. [7]
    B.F. Hoskins, S.A. Mason, and J.C.B. White, J. Chem. Soc., Chem. Commun., 554 (1969).Google Scholar
  11. [8]
    G.A. Williams, R. Mason, S.A. Mason, and P.E. Fielding, J. Chem. Soc., Dalton Trans., 1688 (1980).Google Scholar
  12. [9]
    B.M.L. Chen, and A. Tulinsky, J. Am. Chem. Soc., 94, 4144 (1972).CrossRefGoogle Scholar
  13. [10]
    J. Berkowitz, J. Chem. Phys., 70, 2819 (1979).ADSCrossRefGoogle Scholar
  14. [11]
    P. Dupuis, R. Roberge, and C. Sandorfy, Chem. Phys. Lett., 75, 434 (1980).ADSCrossRefGoogle Scholar
  15. [12]
    J. Almlöf, Int. J. Quantum Chem., 8, 915 (1974).CrossRefGoogle Scholar
  16. [13]
    R.E. Christoffersen, Int. J. Quantum Chem., 16, 573 (1979).CrossRefGoogle Scholar
  17. [14]
    U. Nagashima, T. Takada, and K. Ohno, J. Chem. Phys., 85, 4524 (1986).ADSCrossRefGoogle Scholar
  18. [15]
    M.-M. Rohmer, in “Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry”, A. Veillard, ed., D. Reidel, 1986.Google Scholar
  19. [16]
    A.M. Schaffer, and M. Gouterman, Theor. Chim. Acta, 25, 62 (1972).CrossRefGoogle Scholar
  20. [17]
    A. Henriksson, and M. Sundbom, Theor. Chim. Acta, 27, 213 (1972).CrossRefGoogle Scholar
  21. [18]
    Z. Berkovitch-Yellin, and D.Z. Ellis, J. Am. Chem. Soc., 103, 6066 (1981).CrossRefGoogle Scholar
  22. [19]
    L. Edwards, and M. Gouterman, J. Mol. Spectrosc., 33, 292 (1970).ADSCrossRefGoogle Scholar
  23. [20]
    E. Ortí, and J.L. Brédas, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • E. Ortí
    • 1
  • J. L. Brédas
    • 1
  1. 1.Laboratoire de Chimie Théorique Appliquée, Centre de Recherches sur les Matériaux AvancésFacultés Universitaires Notre-Dame de la PaixNamurBelgium

Personalised recommendations