Advertisement

Layer rigidity of clay intercalation compound: [Me4N+]1−x [Me3NH+]x −V

  • S. Lee
  • H. Kim
  • S. A. Solin
  • T. J. Pinnavaia
Part of the NATO ASI Series book series (NSSB, volume 172)

Abstract

Vermiculite is an Alumino-Silicate clays which is one of the layered materials that can form intercalation compounds [1–3]. The host layer of Vermiculite is classified as a 2:1 layered silicate due to its structure [2]. This 2:1 layered silicate is responsible for several of the distinctive properties of Vermiculite. First, unlike graphite layers which are charge neutral, 2:1 layered silicate has a negative layer charge. To compensate this the galleries of Vermiculite are occupied by cations and in turn this makes the intercalation process in CIC’s (Clay Intercalation Compounds) an ion exchange process. Second, because the 2:1 silicate layers are composed of multiple, cross-linked planes of atoms, one can expect the clay layers to be relatively rigid to transverse distortions. The rigidity of the silicate layer is important not only for the study of fundamental physical properties of quasi-two dimensional systems but also for practical applications such as catalysis [4, 5]. In any case, it is very important to know how rigid the layer is and what factors affect layer rigidity.

Keywords

Basal Spacing Layered Silicate Intercalation Compound Host Layer Interference Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.W. Brindly and G. Brown (eds.): Crystal Structure of Clay Minerals and Their X-Ray Identification (Minerological Society, London, 1980).Google Scholar
  2. 2.
    R.E. Grim: Clay Minerology (McGraw-Hill, New York, 1968).Google Scholar
  3. 3.
    S.A. Solin: J. Molec. Catalysis 27, 293 (1984).CrossRefGoogle Scholar
  4. 4.
    T.J. Pinnavaia: Science 220, 365 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    M.S. Wittingham and A.J. Jacobson (eds.): Intercalation Chemistry Article by J.M. Thomas (Academic Press, New York, 1982).Google Scholar
  6. 6.
    H. Kim and T.J. Pinnavaia: unpublished.Google Scholar
  7. 7.
    B.R. York, S.A. Solin, N. Wada, R.H. Raythatha, I.D. Johnson, and T.J. Pinnavaia: Solid State Comm. 54 475 (1985).ADSCrossRefGoogle Scholar
  8. 8.
    M.S. Dresselhaus and G. Dresselhaus: Adv. Phys. 30, 139 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    D.H. Fink, F.S. Nakayama, and B.L. McNeal: Soil Sci. Soc. Amer. Proc. 35, 552 (1971)CrossRefGoogle Scholar
  10. 10.
    M.B. McBride and M.M. Mortland: Clays and Clay Minerals 21, 323 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    S.B. Hendricks and E. Teller: J. Chem. Phys. 10, 147 (1942).ADSCrossRefGoogle Scholar
  12. 12.
    M.S. Dresselhaus (ed.): Intercalation in Layered Materials, NATO ASI Series 148, Article by S.A. Solin (Plenum Press, New York, 1986).CrossRefGoogle Scholar
  13. 13.
    M. Ishii, T. Shimanouchi, and M. Nakahirs: Inorganica Chimica Acta /1:3/, 387 (1967).CrossRefGoogle Scholar
  14. 14.
    D.R. Hines, N. Wada, and M. Suzuki: Bull. Am. Phys. Soc. 32, 559 (1987)Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • S. Lee
    • 1
    • 2
  • H. Kim
    • 1
    • 3
  • S. A. Solin
    • 1
    • 2
  • T. J. Pinnavaia
    • 1
    • 3
  1. 1.Center for Fundamental Materials ResearchMichigan State UniversityEast LansingUSA
  2. 2.Department of Physics and AstronomyMichigan State UniversityEast LansingUSA
  3. 3.Department of ChemistryMichigan State UniversityEast LansingUSA

Personalised recommendations