Intercalation of tetraselenafulvalene (TSF) and tetramethyltetraselenafulvalene (TMTSF) into iron oxychloride (FeOCl)

  • J. F. Bringley
  • J. M. Fabre
  • B. A. Averill
Part of the NATO ASI Series book series (NSSB, volume 172)


Conducting organic materials (1) have attracted the interest of scientists for about two decades. Radical cation salts derived from tetrathia- and tetraselenafulvalenes have been much more studied because some of them have been found to exhibit superconductivity at low temperatures (2). From accumulated data it has been established structural factors are crucial in producing electrically conductive materials (3). Thus, as in TTF-TCNQ (4), the formation of regular segregated stacks (5) is considered as a condition necessary for the conducting network to be formed. But such a formation is very often unpredictable (6). That is why we decided to enforce a segregated structure upon organic π -donors using lamellar materials as macroanionic electron π -acceptors.


Radical Cation Guest Molecule Conducting Network Inter Layer Guest Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1) a-.
    D.O. Cowan and F.M. Wiygul; chemical and engineering July 21, 1986, p. 28.Google Scholar
  2. b-.
    K. Bechgaard, Andersen J.R.; “Physics and chemistry of low dimensional solids” L. Alcacer; ed. D. Reidel. Press Holland 1980, 247–263.CrossRefGoogle Scholar
  3. (2) a-.
    D. Jerome, A. Mazaud, M. Ribault and K. Bechgaard. C.R. Acad. Sci. Paris, 1980, t-290, B-27.Google Scholar
  4. b-.
    J.M. Williams, M.A. Beno; H.H. Wang; P.C. Leung, T.J. Emge; V. Geiser; K.D. Karlson; Acc. Chem. Res. 1985, 18, 261.CrossRefGoogle Scholar
  5. (3) a-.
    P. Delhaes; C. Coulon; J. Amiell; S. Flandrois; E. Torreilles; J.M. Fabre; L. Giral. Mol. Cryst. Liq. Cryst., 1979, 50, 43.CrossRefGoogle Scholar
  6. (3) b-.
    J.M. Fabre; E. Torreilles; M. Vigroux; L. Giral; J. Chem. Res. (M), 1980, 4564.Google Scholar
  7. (4).
    T.E. Philips; R.J. Kistenmacher; J.P. Ferraris; D.O. Cowan; J.C.S. Chem. Commun; 1973, 471.Google Scholar
  8. (5).
    K. Bechgaard; C.S. Jacobsen; K. Mortensen; H.T. Pedersen; N. Thorup; Solid State Commun; 1980, 33, 1119.ADSCrossRefGoogle Scholar
  9. (6).
    F. Wudl; Acc. Chem. Res., 1984, 17, 227.CrossRefGoogle Scholar
  10. (7).
    B.A. Averill; S.M. Kauzlarich; M.R. Antonio; J. de Physique (Paris), 1983, 44, C3-1973.Google Scholar
  11. (8) S.M. Kauzlarich; B.K. Teo; B.A. Averill; inorg. Chem. 1986, 25, 28.Google Scholar
  12. (9).
    B.A. Averill; S.M. Kauzlarich; B.K. Teo; J. Faber. Jr; Mol. Cryst. Liq. Cryst., 1985, 120, 259.CrossRefGoogle Scholar
  13. (10).
    S.M. Kauzlarich; J.L. Stanton; J. Faber Jr; B.A. Averill; J. Amer. Chem. Soc, 1986, 108, 7946.CrossRefGoogle Scholar
  14. (11).
    M.V. Lakshmikantan and M.P. Cava; J.C.S. Chem. Commun, 1975, 882.Google Scholar
  15. (12).
    K. Bechgaard; D.O. Cowan; A.N. Bloch; J.C.S. Chem. Commun, 1974, 937.Google Scholar
  16. (13).
    Reaction conditions: TSF; 14-17d. at 70°C; 0.03 M Tmtsf, 4–6 week at 85°C. After work up, the intercalates were treated again with guest solutions if intercalation was incomplete.Google Scholar
  17. (14).
    M.D. Lind; Acta. Cryst., 1972, B-26, 1058.Google Scholar
  18. (15).
    M. Meneghetti; R. Bozio; I. Zanon; C. Pecile; C. Ricotta; M. Zanetti; J. Chem. Phys., 1984, 80, 6210.ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • J. F. Bringley
    • 1
  • J. M. Fabre
    • 2
  • B. A. Averill
    • 1
  1. 1.Department of ChemistryUniversity of Virginia CharlottesvilleVirginiaUSA
  2. 2.Laboratoire de Chimie Structurale OrganiqueU.S.T.L.Montpellier CedexFrance

Personalised recommendations