Structural chemistry, phase equilibria and phase transitions in graphite intercalation compounds

  • John E. Fischer
Part of the NATO ASI Series book series (NSSB, volume 172)

Abstract

This NATO Advanced Study Institute is the first time since 1978 that people working on different classes of “intercalation compounds” have been brought together. The unifying theme is the tailoring of properties by inserting guest atoms or molecules into more-or-less well-defined interstitial sites defined by a more-or-less anisotropic host lattice. The properties of interest may be primarily electronic (e.g., synthetic metals derived from doped polymers, intercalated graphite, etc.), ionic transport (solid electrolytes, superionic conductors), magnetic, etc. In all cases an important first step is to understand the rich and complex structural chemistry which results from competing microscopic interactions in low-dimensional, multicomponent systems. In particular, the most novel physical properties often depend sensitively on the effective dimensionality, a “parameter” which is not always straightforward to define.

Keywords

Staging Transition Configurational Entropy Elastic Contribution Graphite Intercalation Compound Dope Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Synthetic Metals 12 (1985): Proceedings of International Symposium on Graphite Intercalation Compounds, Tsukuba Japan, May 1985.Google Scholar
  2. 2.
    Proceedings International Symposium on Graphite Intercalation Compounds, Jerusalem Israel, May 1987; to be published in Synthetic Metals.Google Scholar
  3. 3.
    Intercalation in Layered Materials, edited by M. S. Dresselhaus (Plenum NY 1986); NATO Series Vol. 148.Google Scholar
  4. 4.
    S. A. Safran, Phys. Rev. Lett. 44, 937 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    P. Bak and R. Bruinsma, Phys. Rev. Lett. 49, 249 (1982)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    J. E. Fischer and H. J. Kim, Phys. Rev. B35, 3295 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    J. R. Dahn, D. C. Dahn and R. R. Haering, Solid State Commun. 42, 179 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    S. A. Safran and D. R. Hamann, Phys. Rev. Lett. 42, 1410 (1979)ADSCrossRefGoogle Scholar
  9. 9.
    J. E. Fischer, C. D. Fuerst and K. C. Woo, Synth. Met. 7, 1 (1983)CrossRefGoogle Scholar
  10. 10.
    D. P. DiVincenzo and E. J. Mele, Phys. Rev. B32, 2538 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    H. Zabel, A. Magerl, A. J. Dianoux and J. J. Rush, Phys. Rev. Lett. 50, 2094 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    J. E. Fischer, Mat. Sci. Eng. 31, 211 (1977)CrossRefGoogle Scholar
  13. 13.
    N. Wada, S. Minomura and J. Pluth, p. 51 in Ref. 12.Google Scholar
  14. 14.
    M. Suzuki, Phys. Rev. B33, 1386 (1986).ADSCrossRefGoogle Scholar
  15. 15.
    H. Zabel, M. Suzuki, D. A. Neumann, S. E. Hardcastle, A. Magerl and W. A. Kamitakahara, p. 105 in Ref. 12.Google Scholar
  16. 16.
    D. P. DiVincenzo, C. D. Fuerst and J. E. Fischer, Phys. Rev. B29, 1115 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    R, Clarke, N. Wada and S. A. Solin, Phys. Rev. Lett. 44, 1616 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    H. J. Kim, J. E. Fischer, D. B. McWhan and J. D. Axe, Phys. Rev. B33, 1329 (1986).ADSCrossRefGoogle Scholar
  19. 19.
    J. B. Hastings, W. D. Ellenson and J. E. Fischer, Phys. Rev. Lett. 42, 1552 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    B. Sundqvist and J. E. Fischer, Phys. Rev. B34, 3532 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    V. B. Cajipe and J. E. Fischer, Phys. Rev. B35, 4854 (1987).ADSCrossRefGoogle Scholar
  22. 22.
    M. E. Huster, P. A. Heiney, V. B. Cajipe and J. E. Fischer, Phys. Rev. B35, 3311 (1987).ADSCrossRefGoogle Scholar
  23. 23.
    R. Clarke, N. Caswell and S. A. Solin, Phys. Rev. Lett. 42, 61 (1979)ADSCrossRefGoogle Scholar
  24. 24.
    J. E. Fischer and H. J. Kim, p. 137 in Ref. 1.Google Scholar
  25. 25.
    J. M. Bloch, H. Katz, D. Moses, V. B. Cajipe and J. E. Fischer, Phys. Rev. B31, 6785 (1985).ADSCrossRefGoogle Scholar
  26. 26.
    G. Kirczenow, p. 143 in Ref. 12.Google Scholar
  27. 27.
    D. S. Robinson and M. B. Salamon, Phys. Rev. Lett. 48, 156 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    C. T. Chan, W. A. Kamitakahara, K. M. Ho and P. C. Eklund, Phys. Rev. Lett. 58, 1528 (1987)ADSCrossRefGoogle Scholar
  29. 29.
    S. E. Millman and G. Kirczenow, Phys. Rev. B26, 2310 (1982).ADSCrossRefGoogle Scholar
  30. 30.
    K. C. Woo, H. Mertwoy, J. E. Fischer, W. A. Kamitakahara and D. S. Robinson, Phys. Rev. B27, 7831 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    R. Nishitani, Y. Uno, H. Suematsu, Y. Fujii and T. Matsushita, Phys. Rev. Lett. 52, 1504 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    G. Kirczenow, Phys. Rev. Lett. 52, 437 (1984)ADSCrossRefGoogle Scholar
  33. 33.
    M. E. Misenheimer and H. Zabel, Phys. Rev. Lett. 54, 2521 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    S. Hendricks and E. Teller, J. Chem. Phys. 10, 147 (1942)ADSCrossRefGoogle Scholar
  35. 35.
    C. D. Fuerst, J. E. Fischer, J. D. Axe, J. B. Hastings and D. B. McWhan, Phys. Rev. Lett. 50, 357 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    J. E. Fischer and H. J. Kim, Phys. Rev. B35, 6826 (1987).ADSCrossRefGoogle Scholar
  37. 37.
    R. H. Baughman, L. W. Shacklette, N. S. Murthy, G. G. Miller and R. L. Elsenbaumer, Mol. Cryst. Liq. Cryst. 118, 253 (1985)CrossRefGoogle Scholar
  38. 38.
    M. Winokur and A. J. Heeger, Phys. Rev. Lett. (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • John E. Fischer
    • 1
  1. 1.Laboratory for Research on the Structure of MatterUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations