Influence of the zirconium diselenide stoichiometry on its behaviour upon lithium intercalation

  • Philippe Deniard
  • Luc Trichet
  • Yves Chabre
Part of the NATO ASI Series book series (NSSB, volume 172)


Zirconium diselenide belongs to the IVB group transition metal dichalcogenides which have lamellar structures and easily intercalate metals and molecules. From optical measurements (Lee et al., 1969) it appears as a semiconductor with a 1.2 eV energy gap. But from the Gleizes and Jeannin work (1970), it is known that zirconium diselenide does not exist as a stoichiometric compound but as ZrSey with 1.85 < y < 1.95.


Stoichiometric Compound Lithium Content Lithium Intercalation Pristine Material Electrochemical Intercalation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armand M. (1978) Thesis, university of Grenoble. (1979) in “Fast Ion Transport in Solids”, P. Vashishta, J.N. Mundy and G.K. Shenoy eds., p.131, North-Holland, N.Y. (1980) in “Materials for Advanced Batteries”, Murphy D.W. Brodhead J. and Steele B.C. eds. p.145, Plenum Press, N.Y.Google Scholar
  2. Berthier C., Chabre Y., Ségransan P., Chevalier P., Trichet L. and Le Méhauté A., (1981) Solid State Ionics, 5, 379.CrossRefGoogle Scholar
  3. Berthier C., Chabre Y., Ségransan P., Deniard P., Trichet L. and Rouxel J. (1984) in “Physics and Chemistry of Electrons and Ions in Condensed Matter” J.V. Acrivos, N.F. Mott and A.D. Yoffe eds. NATO ASI Series, C130, 561, D. Reidel, Dordretch.Google Scholar
  4. Chabre Y., Deniard P. and Yazami R. (1987), presented at the sixth International Meeting on Solid State Ionics, Garmisch (D), 1987 and to appear in Solid State Ionics.Google Scholar
  5. Dahn J.R., Mc. Kinnon W.R. and Lévy-Clément C., (1985) Solid State Comm., 54, 245.ADSCrossRefGoogle Scholar
  6. Deniard P., Chevalier P., Trichet L., Chabre Y. and Pannetier J., (1987) Sol. State Comm., 64, 2, pp 175–180.ADSCrossRefGoogle Scholar
  7. Gleizes A. and Jeannin Y., (1970) J. Solid State Chem., 1, 180.ADSCrossRefGoogle Scholar
  8. Klipstein P.C., (1983) Ph.D. Thesis, university of Cambridge.Google Scholar
  9. Klipstein P.C., Pereira CM. and Friend R.H., (1984) see Berthier (1984), NATO ASI Series, C130. 545.Google Scholar
  10. Lee P.A., Said G., Davis R. and Lim T.H. (1969) J. Phys. Chem. Sol., 30, 2719.ADSCrossRefGoogle Scholar
  11. Onuki Y., Inada R., Tanuma S., Yamanaka S. and Kamimura H., (1982) J. Phys. Soc. Japan, 51, 880.ADSCrossRefzbMATHGoogle Scholar
  12. Onuki Y., Inada R., Tanuma S., Yamanaka S. and Kamimura H., (1983) Solid State Ionics 8, 141.CrossRefGoogle Scholar
  13. Onuki Y., Hirai T., Shibutani K. and Komatsubara T., (1984) J. Inc. Phen., 2, 279.CrossRefGoogle Scholar
  14. Thompson A.H., (1978) Phys. Rev. Lett. 40, 1511.ADSCrossRefGoogle Scholar
  15. Thompson A.H., (1979) in “Fast Ion Transport in Solids”, P. Vashishta, J.N. Mundy and G.K. Shenoy eds., p.47, North-Holland, N.Y.Google Scholar
  16. Yazami R., (1987), in this NATO ASI Series volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Philippe Deniard
    • 1
  • Luc Trichet
    • 1
  • Yves Chabre
    • 2
  1. 1.Laboratoire de Chimie des Solides, associé au CNRSUniversité de NantesNantesFrance
  2. 2.Laboratoire de Spectrométrie Physique, associé au CNRSUniversité Scientifique Technologique et Médicale de GrenobleSaint Martin D’HeresFrance

Personalised recommendations