Skip to main content

Electronic and transport properties of highly conducting polymers

  • Chapter
Chemical Physics of Intercalation

Part of the book series: NATO ASI Series ((NSSB,volume 172))

  • 464 Accesses

Abstract

Conducting polymers! If, by the term “conducting”, we mean a material displaying an electrical conductivity at the metallic level, i.e. a conductivity typically larger than 100 S/cm at room temperature, the possibility of labelling in this way an organic polymer was considered until the late sixties to be very remote. In the past fifteeen years, however, exciting discoveries have triggered a revolution in our knowledge and perception of the organic solid state. Nowadays, there exists a large number of electrically conducting polymers [1] and the steady improvement of their mechanical characteristics, environmental stability, and solubility properties opens up interesting technological applications. Conducting polymers can indeed offer to combine in a single material the electrical properties of metals with the plasticity, light weight, low cost, and synthetic engineering feasibility of polymers. Furthermore, in their pristine state, these polymers have been recently demonstrated to possess very promising nonlinear optical characteristics.

Chercheur Qualifié of the Belgian National Fund for Scientific Research (FNRS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a) Proceedings of the International Conference on Synthetic Metals-ICSM’86-, Synth. Met. 17, 18, & 19 (1987).

    Google Scholar 

  2. “Handbook of Conducting Polymers”, T.A. Skotheim, ed., Marcel Dekker, New York, 1986.

    Google Scholar 

  3. Proceedings of the International Winterschool on the Electronic Properties of Polymers-IWEPP’87-, Springer Verlag, Berlin, in press.

    Google Scholar 

  4. V.V. Walatka, M.M. Labes, and J.H. Perlstein, Phys. Rev. Lett. 31, 1139 (1973).

    Article  ADS  Google Scholar 

  5. M.M. Labes, P. Love, and L.F. Nichols, Chem. Rev. 79, 1 (1979).

    Article  Google Scholar 

  6. R.L. Greene, G.B. Street, and L.J. Suter, Phys. Rev. Lett. 34, 577 (1975).

    Article  ADS  Google Scholar 

  7. W.D. Gill, W. Bludau, R.H. Geiss, P.M. Grant, R.L. Greene, J.J. Mayerle, and G.B. Street, Phys. Rev. Lett. 38, 1305 (1977).

    Article  ADS  Google Scholar 

  8. G.B. Street and W.D. Gill, in “Molecular Metals”, W.E. Hatfield, ed., Plenum, New York, 1979, NATO Conference Series VI, vol. 1, p. 301.

    Google Scholar 

  9. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, J. Chem. Soc. Chem. Commun. 578 (1977).

    Google Scholar 

  10. C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, and A.G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).

    Article  ADS  Google Scholar 

  11. H. Naarman, Synth. Met. 17, 223 (1987).

    Article  Google Scholar 

  12. P. Bernier, in this volume.

    Google Scholar 

  13. W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

    Article  ADS  Google Scholar 

  14. W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. B 22, 2209 (1980).

    Google Scholar 

  15. C.S. Yannoni and T.C. Clarke, Phys. Rev. Lett. 51, 1191 (1983).

    Article  ADS  Google Scholar 

  16. C.R. Fincher, C.E. Chen, A.J. Heeger, A.G. MacDiarmid, and J.B. Hastings, Phys. Rev. Lett. 48, 100 (1982).

    Article  ADS  Google Scholar 

  17. C. Rebbi, Scientific American 240, 92 (1979).

    Article  ADS  Google Scholar 

  18. See for instance, M.A. Omar, “Elementary Solid State Physics”, Addison-Wesley, Reading, 1978, ch. 9.11.

    Google Scholar 

  19. D.S. Boudreaux, R.R. Chance, J.L. Brédas, and R. Silbey, Phys. Rev. B 28, 6927 (1983).

    Article  ADS  Google Scholar 

  20. W.P Su and J.R. Schrieffer, Proc. Nat. Acad. Sci. USA 77, 5626 (1980).

    Article  ADS  Google Scholar 

  21. K. Fesser, A.R. Bishop, and D.K. Campbell, Phys. Rev. B 27, 4804 (1983).

    Article  ADS  Google Scholar 

  22. S.A. Brazovskii and N. Kirova, JETP Lett. 33, 4 (1981).

    ADS  Google Scholar 

  23. J.L. Brédas, R.R. Chance, and R. Silbey, Phys. Rev. B. 26, 5843 (1982).

    Article  ADS  Google Scholar 

  24. J.L. Brédas, R.R. Chance, and R. Silbey, Mol. Cryst. Liq. Cryst. 77, 319 (1981).

    Article  Google Scholar 

  25. J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. J.L. Brédas, J.C. Scott, K. Yakushi, and G.B. Street, Phys. Rev. B 30, 1023 (1984).

    Article  ADS  Google Scholar 

  27. J.L. Brédas, F. Wudl, and A J. Heeger, Solid State Commun., in press.

    Google Scholar 

  28. F. Genoud, M. Guglielmi, M. Nechtschein, E.M. Genies, and M. Salmon, Phys. Rev. Lett. 55, 118 (1985).

    Article  ADS  Google Scholar 

  29. A.J. Heeger, in “Conducting Polymers (part II)”, H. Sasabe, ed., CMC, Tokyo, 1987, pp. 5–54.

    Google Scholar 

  30. Z. Vardeny, E. Ehrenfreund, O. Brafman, M. Nowak, H. Schaffer, A.J. Heeger, and F. Wudl, Phys. Rev. Lett. 56, 671 (1986).

    Article  ADS  Google Scholar 

  31. D.D.C. Bradley, R.H. Friend, H. Linderberger, and S. Roth, in ref. 1c.

    Google Scholar 

  32. F.L. Pratt, K.S. Wong, W. Hayes, and D. Bloor, in ref. 1c.

    Google Scholar 

  33. A.J. Epstein, in ref 1b, pp. 1041-1097.

    Google Scholar 

  34. J.L. Brédas and G.B. Street, Acc. Chem. Res. 18, 309 (1985).

    Article  Google Scholar 

  35. D. Moses, A. Denenstein, J. Chen, A.J. Heeger, P. MacAndrew, T. Woerner, A.G. MacDiarmid et Y.W. Park, Phys. Rev. B 25, 7652 (1982).

    Article  ADS  Google Scholar 

  36. T.C. Chung, F. Moraes, J.D. Flood et AJ. Heeger, Phys. Rev. B 29, 2341 (1984).

    Article  ADS  Google Scholar 

  37. J. Chen, T.C. Chung, F. Moraes et A.J. Heeger, Solid State Commun. 53, 757 (1985).

    Article  ADS  Google Scholar 

  38. E.J. Mele et M.J. Rice, Phys. Rev. B 15, 5397 (1981).

    Article  ADS  Google Scholar 

  39. A.J. Epstein, H. Rommelmann, R. Bigelow, H.W. Gibson, D.M. Hoffmann et D.B. Tanner, Phys. Rev. Lett. 50, 1866 (1983).

    Article  ADS  Google Scholar 

  40. K. Ehinger, S. Summerfield, W. Bauhofer, and S. Roth, J. Phys. C: Solid State Phys. 17, 3753 (1984).

    Article  ADS  Google Scholar 

  41. X.Q. Yang, D.B. Tanner, A. Feldblum, H.W. Gibson, M.J. Rice, and A.J. Epstein, Mol. Cryst. Liq. Cryst. 117, 267 (1985).

    Article  Google Scholar 

  42. J. Chen, T.C. Chung, F. Moraes, and A.J. Heeger, Solid State Commun. 53, 757 (1985).

    Article  ADS  Google Scholar 

  43. S. Kivelson and A.J. Heeger, Phys. Rev. Lett. 55, 308 (1985).

    Article  ADS  Google Scholar 

  44. J.L. Brédas, B. Thémans, J.G. Fripiat, J.M. André et R.R. Chance, Phys. Rev. B 29, 6761 (1984).

    Article  ADS  Google Scholar 

  45. J.C. Scott, M. Krounbi, P. Pfluger, and G.B. Street, Phys. Rev. B 28, 2140 (1983).

    Article  ADS  Google Scholar 

  46. J.C. Scott, J.L. Brédas, K. Yakushi, P. Pfluger et G.B. Street, Synth. Met. 9, 165 (1984).

    Article  Google Scholar 

  47. K. Yakushi, L.J. Lauchlan, G.B. Street, and J.L. Brédas, J. Chem. Phys. 81, 4133 (1984).

    Article  ADS  Google Scholar 

  48. T.C. Chung, J.H. Kaufman, A.J. Heeger et F. Wudl, Phys. Rev. B 30, 702 (1984).

    Article  ADS  Google Scholar 

  49. G. Crecelius, M. Stamm, J. Fink, and J.J. Ritsko, Phys. Rev. Lett. 50, 1498 (1983).

    Article  ADS  Google Scholar 

  50. D.D.C. Bradley, G.P. Evans, and R.H. Friend, Synth. Met. 17, 651 (1987).

    Article  Google Scholar 

  51. L.D. Kispert, J. Joseph, J. Tang, M.K. Bowman, G.H. Van Brakel, and J.R. Norris, Synth. Met. 17, 617 (1987).

    Article  Google Scholar 

  52. R.H. Friend and J.R.M. Giles, Synth. Met. 10, 377 (1985).

    Article  Google Scholar 

  53. G. Harbeke, E. Meier, W. Kobel, M. Egli, H. Kiess, and E. Tosatti, Solid State Commun. 55, 419 (1985).

    Article  ADS  Google Scholar 

  54. A.G. Green and A.E. Woodhead, J. Chem. Soc. 2388 (1910).

    Google Scholar 

  55. R. de Surville, M. Josefowicz, L.T. Yu, J. Périchon, and R. Buvet, Electrochim. Acta 13, 1451 (1968).

    Article  Google Scholar 

  56. T. Kobayashi, H. Yoneyama, and H. Tamura, J. Electroanal. Chem. 161, 419 (1984).

    Article  Google Scholar 

  57. J.P. Travers, J. Chroboczek, F. Devreux, F. Genoud, M. Nechtschein, A. Syed, E.M. Genies, and C. Tsintsavis, Mol. Cryst. Liq. Cryst. 121, 195 (1985).

    Article  Google Scholar 

  58. J.C. Chiang and A.G. MacDiarmid, Synth. Met. 13, 193 (1986) and references therein.

    Article  Google Scholar 

  59. A.G. MacDiarmid, J.C. Chiang, A.F. Richter, and AJ. Epstein, Synth. Met. 18, 285 (1987).

    Article  Google Scholar 

  60. J.M. Ginder, A.F. Richter, A.G. MacDiarmid, and A.J. Epstein, to be published.

    Google Scholar 

  61. A.J. Epstein, J.M. Ginder, F. Zuo, R.W. Bigelow, H.S. Woo, D.B. Tanner, A.F. Richter, W.S. Huang, and A.G. MacDiarmid, Synth. Met. 18, 303 (1987).

    Article  Google Scholar 

  62. G. Wnek, Polymer Prepr. 22, 277 (1986)

    Google Scholar 

  63. G. Wnek, Synth. Met. 15, 213 (1986).

    Article  Google Scholar 

  64. H. Linschitz, J. Rennert, and T.M. Korn, J. Am. Chem. Soc. 76, 5839 (1954).

    Article  Google Scholar 

  65. S. Stafström, J.L. Brédas, AJ. Epstein, H.S. Woo, D.B. Tanner, W.S. Huang, and A.G. MacDiarmid, submitted for publication; J.L. Brédas, in ref. 1c.

    Google Scholar 

  66. D.S. Boudreaux, R.R. Chance, J.F. Wolf, L.W. Shacklette, J.L. Brédas, B. Thémans, J.M. André, and R. Silbey, J. Chem. Phys. 85, 4584 (1986).

    Article  ADS  Google Scholar 

  67. S. Stafström and J.L. Brédas, Synth. Met. 14, 297 (1986).

    Article  Google Scholar 

  68. N.S. Sariciftci, H. Neugebauer, and H. Kuzmany, in ref. 1c.

    Google Scholar 

  69. A.P. Monkman and D. Bloor, in ref. 1c.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brédas, J.L. (1987). Electronic and transport properties of highly conducting polymers. In: Legrand, A.P., Flandrois, S. (eds) Chemical Physics of Intercalation. NATO ASI Series, vol 172. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9649-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9649-0_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9651-3

  • Online ISBN: 978-1-4757-9649-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics