Derangements of Cationic Amino Acid Transport in Fibroblasts from Human Desmoid Tumor

  • Franca A. Nucci
  • Ovidio Bussolati
  • Valeria Dall’Asta
  • Giancarlo Gazzola
  • Roberto Giardini
  • Guido G. Guidotti

Abstract

An increased rate of amino acid uptake by System A has been considered a consistent feature of tumor cells1. This inference is based on the following facts: (a) enhancements in the transport rates of site A-reactive amino acids are among the early events associated with cell transformation in vitro 2; (b) increased uptake of some amino acid substrates of System A has been reported for virus- and chemically-transformed cell lines3,4 and (c) rat fibroblasts made tumorigenic by ras transfection exhibit a somewhat faster uptake of 2-(methyl)aminoisobutyric acid (a transport-specific substrate of System A) than non-transfected cells5. However, tumor cell lines have been described that do not exhibit this metabolic feature6,7 and little is known on amino acid transport changes in cells from spontaneously occurring tumors8. We therefore devised experiments to investigate the amino acid transport in cells from a spontaneous human tumor (desmoid tumor fibroblasts) as compared with their normal counterpart (skin-derived fibroblasts). To avoid variability among individuals for transport, the comparison was made between cell cultures obtained from the same donor. The present study concerns the six transport systems for amino acids so far characterized in human fibroblasts9–13.

Keywords

Amino Acid Transport Desmoid Tumor Null Point Amino Acid Uptake Cationic Amino Acid Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. J. Isselbacher, Increased uptake of amino acids and 2-deoxyglucose by virus-transformed cells in culture, Proc. Natl. Acad. Sci. USA 69:585 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    J. F. Perdue, Transport across serum-stimulated and virus-transformed cell membranes, in: “Virus-transformed Cell Membrane”, C. Nicolau, ed., Academic Press, London (1980).Google Scholar
  3. 3.
    A. F. Borghetti, G. Piedimonte, M. Tramacere, A. Severini, P. Ghiringhelli and G. G. Guidotti, Cell density and amino acid transport in 3T3, SV3T3, and SV3T3 revertant cells, J. Cell. Fhysiol. 105:39 (1980).CrossRefGoogle Scholar
  4. 4.
    P. Boerner and M. H. Saier Jr., Growth regulation and amino acid transport in epithelial cells: influence of culture conditions and transformation on A, ASC and L transport activities, J. Cell. Physiol. 113:240 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    E. Racker, R. J. Resnick and R. Feldman, Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes, Proc. Natl. Acad. Sci. USA 82:3535 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    M. K. Patterson Jr., P. J. Birckbichler, E. Conway and G. R. Orr, Amino acid and hexose transport of normal and Simian Virus 40-transformed human cells, Cancer Res. 36:394 (1976).PubMedGoogle Scholar
  7. 7.
    G. B. Segel, A. M. Tometsko and M. A. Lichtman, Y+− and L-System amino acid transport in normal and chronic lymphocytic leukemia lymphocytes: photoinhibition by fluoronitrophenylazide, Arch. Biochem. Biophys. 242:347 (1985).PubMedCrossRefGoogle Scholar
  8. 8.
    G. C. Gazzola, V. Dall’Asta, R. Franchi-Gazzola, O. Bussolati, N. Longo and G. G. Guidotti, Amino acid transport in normal and neoplastic cultured human fibroblasts, in: “Cell Membranes and Cancer”, T. Galeotti et al., eds., Elsevier Science Publishers B. V., Amsterdam (1985).Google Scholar
  9. 9.
    G. C. Gazzola, V. Dall’Asta and G. G. Guidotti, The transport of neutral amino acids in cultured human fibroblasts, J. Biol. Chem. 255:929 (1980).PubMedGoogle Scholar
  10. 10.
    S. Bannai and E. Kitamura, Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture, J. Biol. Chem. 255:2372 (1980).PubMedGoogle Scholar
  11. 11.
    M. F. White, G. C. Gazzola and H. N. Christensen, Cationic amino acid transport into cultured animal cells, J. Biol. Chem. 257:4443 (1982).PubMedGoogle Scholar
  12. 12.
    R. Franchi-Gazzola, G. C. Gazzola, V. Dall’Asta and G. G. Guidotti, The transport of alanine, serine and cysteine in cultured human fibroblasts, J. Biol. Chem. 257:9582 (1982).PubMedGoogle Scholar
  13. 13.
    V. Dall’Asta, G. C. Gazzola, R. Franchi-Gazzola, O. Bussolati, N. Longo and G. G. Guidotti, Pathways of L-glutamic acid transport in cultured human fibroblasts, J. Biol. Chem. 258:6371 (1983).Google Scholar
  14. 14.
    G. C. Gazzola, V. Dall’Asta, R. Franchi-Gazzola and M. F. White, The cluster-tray method for rapid measurement of solute fluxes in adherent cultured cells, Anal. Biochem. 115:368 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    O. Bussolati, P. C. Laris, F. A. Nucci, V. Dall’Asta, N. Longo, G. G. Guidotti and G. C. Gazzola, Dependence of L-arginine accumulation on membrane potential in cultured human fibroblasts, Am. J. Physiol. 253:C391 (1987).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Franca A. Nucci
    • 1
  • Ovidio Bussolati
    • 1
  • Valeria Dall’Asta
    • 1
  • Giancarlo Gazzola
    • 1
  • Roberto Giardini
    • 1
    • 2
  • Guido G. Guidotti
    • 1
  1. 1.Istituto di Patologia GeneraleUniversità di ParmaParmaItaly
  2. 2.Divisione Anatomia Patologica e CitologiaIstituto Nazionale per lo Studio e la Cura dei TumoriMilanoItaly

Personalised recommendations