Chemoprevention of Experimental Tumorigenesis by Dehydroepiandrosterone and Structural Analogs

  • Arthur G. Schwartz
  • Laura L. Pashko
  • Laura A. Hastings
  • Jeannette H. Whitcomb
  • Marvin L. Lewbart


The human adrenal cortex secretes three classes of steroid hormone: glucocorticoid, mineralcorticoid and the so-called adrenal androgens, dehydroepiandrosterone (DHEA) and DHEA-sulfate. The term adrenal androgen is not strictly accurate since DHEA per se is not androgenic and only through metabolism to steroids such as testosterone does it exert such action. DHEA-sulfate is also a principal source of estrogen, through placental metabolism, in the pregnant female1,2. However, in the normal male and female the proportion of sex steroids derived from adrenal DHEA is very small compared to the gonadal contribution, and the significance of the adrenal secretion of DHEA and DHEA-sulfate remains unclear3.


G6PDH Activity Mouse Epidermis Mouse Epidermal Cell Cancer Preventive Action Human Adrenal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. E. Baulieu and F. Dray, Conversion of [3H]dehydroisoandrosterone (3 ß-hydroxy-Δ5-androsten-17-one) sulfate to [3H]estrogens in normal pregnant women, J. Clin. Endocrinol. Metab. 23:1298 (1963).PubMedCrossRefGoogle Scholar
  2. 2.
    P. K. Siiteri and P. C. MacDonald, The utilization of circulating dehydroisoandrosterone sulfate for estrogen synthesis during human pregnancy, Steroids 2:713 (1963).CrossRefGoogle Scholar
  3. 3.
    S. Lieberman, Pictorial endocrinology and empirical hormonology, The Sir Henry Dale Lecture for 1986, J. Endocr. 111:519 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    N. Orentriech, J. L. Brind, R. L. Rizer and J. H. Vogelman, Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood, J. Clin. Endocrinol. Metab. 59:551 (1984).CrossRefGoogle Scholar
  5. 5.
    C. Gherondache, L. Romanoff and G. Pincus, Steroid hormones in aging men, in: “Endocrines and Aging”, L. Gitman, ed., Charles Thomas, Springfield, IL (1967).Google Scholar
  6. 6.
    P. Weidman, S. deMyttenaere-Bursztein, M. Maxwell, and J. deLima, Effect of aging on plasma renin and aldosterone in normal man, Kidney Int. 8:325 (1975).CrossRefGoogle Scholar
  7. 7.
    L. Parker, T. Gral, V. Perrigo and R. Shorosky, Decreased adrenal androgen sensitivity to ACTH during aging, Metabolism 30:601 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    R. D. Bulbrook, J. L. Hayward, C. C. Spicer and B. S. Thomas, Abnormal excretion of urinary steroids by women with early breast cancer Lancet ii:1238 (1962).CrossRefGoogle Scholar
  9. 9.
    R. D. Bulbrook, J. L. Hayward and C. C. Spicer, Relation between urinary androgen and corticoid excretion and subsequent breast cancer, Lancet ii:395 (1971).CrossRefGoogle Scholar
  10. 10.
    A. G. Schwartz, Inhibition of spontaneous breast cancer formation in female C3H (Avy/a) mice by long-term treatment with dehydroepiandrosterone, Cancer Res. 39:1129 (1979).PubMedGoogle Scholar
  11. 11.
    A. G. Schwartz and R. H. Tannen, Inhibition of 7,12-dimethylbenz(a)anthracene-and urethan-induced lung tumor formation in A/J mice by long-term treatment with dehydroepiandrosterone, Carcinogenesis 2:1335 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    J. W. Nyce, P. N. Magee, G. C. Hard and A. G. Schwartz, Inhibition of 1,2-dimethylhydrazine-induced colon tumorigenesis in Balb/c mice by dehydroepiandrosterone, Carcinogenesis 5:57 (1984).PubMedCrossRefGoogle Scholar
  13. 13.
    M. A. Moore, W. Thamavit, A. Tsuda, K. Sato, A. Ichihara and N. Ito, Modifying influence of dehydroepiandrosterone on the development of dihydroxy-di-n-propylnitrosamine-initiated lesions in the thyroid, lung and liver of F344 rats, Carcinogenesis 7:311 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Garcea, L. Daino, R. Pascale, S. Frassetto, P. Cozzolino, M. E. Ruggiu and F. Feo, Inhibition by dehydroepiandrosterone of liver preneoplastic foci formation in rats after initiation-selection in experimental carcinogenesis, Toxicol. Path. 15:164 (1987).CrossRefGoogle Scholar
  15. 15.
    L. L. Pashko, R. J. Rovito, J. R. Williams, E. L. Sobel and A. G. Schwartz, Dehydroepiandrosterone (DHEA) and 3 ß-methylandrost-5-en-17-one: inhibitors of 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted skin papilloma formation in mice, Carcinogenesis 5:463 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    L. L. Pashko, G. C. Hard, R. J. Rovito, J. R. Williams, E. L. Sobel and A. G. Schwartz, Inhibition of 7,12-dimethylbenz(a)anthraceneinduced skin papillomas and carcinomas by dehydroepiandrosterone and 3 ß-methylandrost-5-en-17-one in mice, Cancer Res. 45:164 (1985).PubMedGoogle Scholar
  17. 17.
    P. A. Marks and J. Banks, Inhibition of mammalian glucose-6-phosphate dehydrogenase by steroids, Proc. Natl. Acad. Sci. USA 46:447 (1960).PubMedCrossRefGoogle Scholar
  18. 18.
    G. W. Oertel and P. Benes, The effects of steroids on glucose-6-phosphate dehydrogenase, J. Steroid Biochem. 3:493 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    A. G. Schwartz and A. Perantoni, Protective effect of dehydroepiandrosterone against aflatoxin B1, and 7,12-dimethylbenz(a)anthraceneinduced cytotoxicity and transformation in cultured cells, Cancer Res. 35:2482 (1975).PubMedGoogle Scholar
  20. 20.
    J. A. Miller, Carcinogenesis by chemicals: an overview, Cancer Res. 30:559 (1970).PubMedGoogle Scholar
  21. 21.
    F. Feo, L. Pirisi, R. Pascale, L. Daino, S. Frassetto, R. Garcea and L. Gaspa, Modulatory effect of glucose-6-phosphate dehydrogenase deficiency on benzo(a)pyrene toxicity and transforming activity for in vitro-cultured human skin fibroblasts, Cancer Res. 44:3419 (1984).PubMedGoogle Scholar
  22. 22.
    F. Feo, L. Pirisi, R. Pascale, L. Daino, S. Frassetto, S. Zanetti and R. Garcea, 1984, Modulatory mechanisms of chemical carcinogenesis: the role of the NADPH pool in benzo(a)pyrene activation, Toxicol. Path. 11:261 (1984).CrossRefGoogle Scholar
  23. 23.
    L. L. Pashko and A. G. Schwartz, Effect of food restriction, dehydroepiandrosterone, or obesity on the binding of [3H]-7,12-dimethylbenz(a)anthracene to mouse skin DNA, J. Gerontol. 38:8 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    T. S. Argyris, Nature of epidermal hyperplasia produced by mezerein, a weak tumor promoter, in initiated skin of mice, Cancer Res. 43:1768 (1983).PubMedGoogle Scholar
  25. 25.
    V. Kinzel, H. Lochrke, L. Goertler, G. Fürstenberger and F. Marks, Suppression of the first stage of phorbol 12-tetradecanoate-13-acetateeffected tumor promotion in mouse skin by non-toxic inhibition of DNA synthesis, Proc. Natl. Acad. Sci. USA 81:5858 (1984).PubMedCrossRefGoogle Scholar
  26. 26.
    L. L. Pashko, A. G. Schwartz, M. Abou-Gharbia and D. Swern, Inhibition of DNA synthesis in mouse epidermis and breast epithelium by dehydroepiandrosterone and related steroids, Carcinogenesis 2:717 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    R. Raineri and H. R. Levy, On the specificity of steroid interaction with mammary gland glucose-6-phosphate dehydrogenase, Biochemistry 9:2233 (1970).PubMedCrossRefGoogle Scholar
  28. 28.
    C. W. Castor and B. L. Baker, The local action of adrenocortical steroids on epidermis and connective tissue of the skin, J. Endocrinol. 47:234 (1950).CrossRefGoogle Scholar
  29. 29.
    H. Green and O. Kehinde, An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion, Cell 5:19 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    G. B. Gordon, J. A. Newitt, L. M. Shantz, D. E. Weng and P. Talalay, Inhibition of the conversion of 3T3 fibroblast clones to adipocytes by dehydroepiandrosterone and related anticarcinogenic steroids, Cancer Res. 46:3389 (1986).PubMedGoogle Scholar
  31. 31.
    C. R. Dworkin, S. D. Gorman, L. L. Pashko, V. J. Cristofallo and A. G. Schwartz, Inhibition of growth of HeLa and WI-38 cells by dehydroepiandrosterone and its reversal by ribo-and deoxyribonucleosides, Life Sci. 38:1451 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    G. B. Gordon, L. M. Shantz and P. Talalay, Modulation of growth, differentiation and carcinogenesis by dehydroepiandrosterone, Adv. Enzyme Regulation 26:355 (1987).CrossRefGoogle Scholar
  33. 33.
    F. Feo, R. Garcea, L. Daino, S. Frassetto, P. Cozzolino, M. E. Ruggiu, M. G. Vannini, R. Pascale, L. Lenzerini, M. M. Simile and M. Puddu, Inhibition of hepatocarcinogenesis promotion by dehydroepiandrosterone and its reversal by ribo-and deoxyribonucleosides, Fourth Sardinian International Meeting: Models and Mechanisms in Chemical Carcinogenesis, abstract, (1987).Google Scholar
  34. 34.
    B. M. Babior, The enzymatic basis for 0 2 production by human neutrophils, Can. J. Physiol. Pharmacol. 60:1353 (1982).PubMedCrossRefGoogle Scholar
  35. 35.
    I. Emerit and P. Cerutti, Clastogenic action of tumor promoter phorbol-12-myristate-13-acetate in mixed human leukocyte cultures, Carcinogenesis 4:1313 (1983).PubMedCrossRefGoogle Scholar
  36. 36.
    A. W. Hsie, L. Recio, D. S. Katz, C. Q. Lee, M. Wagner and R. L. Schenley, Evidence for reactive oxygen species inducing mutations in mammalian cells, Proc. Natl. Acad. Sci. USA 83:9616 (1986).PubMedCrossRefGoogle Scholar
  37. 37.
    C. Borek and W. Troll, Modifiers of free radicals inhibit in vitro the oncogenic actions of X-rays, bleomycin and the tumor promoter 12-0-tetradecanoylphorbol-13-acetate, Proc. Natl. Acad. Sci. USA 80:1304 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    T. W. Kensler, D. M. Bush and W. J. Kozumbo, Inhibition of tumor promotion by a biomimetic Superoxide dismutase, Science 221:75 (1983).PubMedCrossRefGoogle Scholar
  39. 39.
    B. D. Goldstein, G. Witz, M. Amoruso, D. S. Stone, and W. Troll, Stimulation of human polymorphonuclear leukocyte Superoxide anion radical production by tumor promoters, Cancer Lett. 11:257 (1981).PubMedCrossRefGoogle Scholar
  40. 40.
    J. M. Whitcomb and A. G. Schwartz, Dehydroepiandrosterone and 16α-Br-epiandrosterone inhibit 12-0-tetradecanoylphorbol-13-acetate stimulation of Superoxide radical production by human polymorphonuclear leukocytes, Carcinogenesis 6:333 (1985).PubMedCrossRefGoogle Scholar
  41. 41.
    A. G. Schwartz and L. L. Pashko, Food restriction inhibits [3H] 7, 12-di-methylbenz(a)anthracene binding to mouse skin DNA and tetradecanoylphorbol-13-acetate stimulation of epidermal [3H]thymidine incorporation, Anticancer Res. 6:1279 (1986).PubMedGoogle Scholar
  42. 42.
    S. Dessi, B. Batetta, D. Pulixi, A. Carrucciu, M. Armeni, M. F. Mulas and P. Pani, Modifying influence of fasting on DNA synthesis, cholesterol metabolism and HMP shunt enzymes in liver hyperplasia induced by lead nitrate, Fourth Sardinian International Meeting: Models and Mechanisms in Chemical Carcinogenesis, abstract, (1987).Google Scholar
  43. 43.
    E. Aizu, T. Nakadate, S. Yamamoto and R. Kato, Inhibition of 12-0-tetradecanoylphorbol-13-acetate mediated epidermal ornithine decarboxylase induction and skin tumor promotion by new lipoxygenase inhibitors lacking protein kinase C inhibitory effects, Carcinogenesis 7:1809 (1986).PubMedCrossRefGoogle Scholar
  44. 44.
    P. A. Craven, J. Pfanstiel and F. R. DeRubertis, Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids, J. Clin. Invest. 79:532 (1987).PubMedCrossRefGoogle Scholar
  45. 45.
    Y. S. Bakhle, Synthesis and catabolism of cyclo-oxygenase product, Brit. Med. Bull. 39:214 (1983).PubMedGoogle Scholar
  46. 46.
    G. W. Taylor and H. R. Morris, Lipoxygenase pathways, Brit. Med. Bull. 39:219 (1983).PubMedGoogle Scholar
  47. 47.
    S. M. Fischer and L. M. Adams, Suppression of tumor promoter-induced chemiluminescence in mouse epidermal cells by several inhibitors of arachidonic acid metabolism, Cancer Res. 45:3130 (1985).PubMedGoogle Scholar
  48. 48.
    G. Fürstenberger and F. Marks, Indomethacin inhibition of cell proliferation induced by the phorbolester TPA is reversed by prostaglandin E2 in mouse epidermis, Biochem. Biophys. Res. Commun. 84:1103 (1978).PubMedCrossRefGoogle Scholar
  49. 49.
    L. A. Hastings, L. L. Pashko, M. L. Lewbart and A. G. Schwartz, Dehydroepiandrosterone and two structural analogs inhibit tetradecanoylphorbol-13-acetate stimulation of prostaglandin E2 content in mouse skin, submitted.Google Scholar
  50. 50.
    M. Nagao, T. Ishibashi, T. Okayasu and Y. Imai, Possible involvement of NADPH-cytochrome P-450 reductase and cytochrome b5 on ß-ketostearoyl-CoA reduction in microsomal fatty acid chain elongation supported by NADPH, FEBS Letters 155:11 (1983).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Arthur G. Schwartz
    • 1
  • Laura L. Pashko
    • 1
  • Laura A. Hastings
    • 1
  • Jeannette H. Whitcomb
    • 1
  • Marvin L. Lewbart
    • 2
  1. 1.Fels Research Institute and Department of MicrobiologyTemple University Medical SchoolPhiladelphiaUSA
  2. 2.Steroid LaboratoryCrozer-Chester HospitalChesterUSA

Personalised recommendations