Comparative Study on the Effect of Different Treatment Schedules on Some Carbohydrate Metabolizing Enzyme Activities in Rats During Hepatocarcinogenesis

  • Ulrich Gerbracht
  • Günter Weiße
  • Bernd Schlatterer
  • Manfred Reinacher
  • Rolf Schulte-Hermann
  • Erich Eigenbrodt


Phenobarbital (PB) is a well known tumor promoter, which in combination with an initiating drug is able to accelerate the development of γ-glutamyl-transferase (γ-GT)-positive foci and to induce tumor formation after long term feeding1–4. PB is also found to stimulate liver growth1,3,5. The hypolipidaemic drugs nafenopin and clofibrate induce liver tumors when fed to rats or mice6–9. They do not, however, stimulate growth of γ-GT-positive foci3,10,11. Recently we have shown some alterations in carbohydrate metabolizing enzymes in hepatocarcinomas induced with NNM and promoted by long term feeding with phenobarbital or clofibrate12. Pyruvate Kinase (PK) and fructose-1,6-biphosphatase (FBPase) activities were reduced and malic enzyme activity was increased in these rat liver tumors with and without PB or clofibrate feeding. The activity of γ-GT, however, was dependent on the applicated drugs since only PB induced γ-GT-positive hepatocarcinomas. In this study activities of some enzymes were recorded after short term feeding of PB, clofibrate (Clof) or nafenopin (Naf) for 6 and 16 weeks. The results were compared with data obtained from long term application of these compounds for 64 weeks. Pyruvate kinase isoenzyme type L (LPK), malic enzyme (ME) and γ-glutamyltransferase were also investigated by immunohistological and histochemical methods.


Pyruvate Kinase Malic Enzyme G6PDH Activity Pyruvate Kinase Activity Liver Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Schulte-Hermann, Tumor promotion in the liver, Arch. Toxicol. 57:147 (1985).PubMedCrossRefGoogle Scholar
  2. 2.
    M. A. Pereira, S. L. Herren-Freund, A. L. Britt and M. M. Khouny, Effect of coadministration of phenobarbital sodium on NNM-induced GGT-positive foci and hepatocellular carcinoma in rats, JNCI 72:741 (1983).Google Scholar
  3. 3.
    S. Numoto, K. Furukawa, K. Furuya and M. Williams, Effects of hepatocarcinogenic peroxisome-proliferating hypolipidaemic agents Clofibrate and Nafenopin on the rat liver cell membrane enzymes γ-GT and alkaline phosphatase and on the early stages of liver carcinogenesis, Carcinogenesis 5:1603 (1984).PubMedCrossRefGoogle Scholar
  4. 4.
    T. Kitagawa and H. Sugano, Enhancing effect of phenobarbital on the development of enzyme-altered islands and hepatocellular carcinomas initiated by 3′-Methyl-4-(dimethylamino)azobenzene or diethylnitrosamine, Gann 69:679 (1978).PubMedGoogle Scholar
  5. 5.
    R. Schulte-Hermann, Induction of liver growth by xenobiotic compounds and other stimuli, Crit. Rev. Toxicol. 3:97 (1974).CrossRefGoogle Scholar
  6. 6.
    J. K. Reddy and N. D. Lalwai, Carcinogenesis by hepatic peroxisome proliferators: Evaluation of the risk of hypolipidaemic drugs and industrial plasticizers to humans, Crit. Rev. Toxicol. 12:1 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    J. M. Reddy and M. S. Rao, Malignant tumors in rats fed nafenopin, a hepatic peroxisome proliferator, J. Natl. Cancer Inst. 59:1645 (1977).PubMedGoogle Scholar
  8. 8.
    J. K. Reddy and S. A. Qureshi, Tumorigenicity of the hypolipidaemic peroxisome proliferator ethyl-α-p-chlorophenoxyisobutyrate (clofibrate) in rats, Br. J. Cancer 40:476 (1979).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Mochizuki, K. Furukawa and N. Sawada, Effects of simultaneous administration of clofibrate with diethylnitrosamine on hepatic tumorigenesis in the rat, Cancer Letters 19:99 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    W. Staubli, P. Bentley, F. Bieri, E. Frohlich and F. Waechter, Inhibitory effect of nafenopin upon the development of DENA-induced enzyme-altered foci within the rat liver, Carcinogenesis 5:41 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    U. Gerbracht, I. Timmermann-Trosiener and R. Schulte-Hermann, Studies on regression of foci after withdrawal of tumor promoters, Fd. Chem. Toxic. 23:881 (1985).CrossRefGoogle Scholar
  12. 12.
    U. Gerbracht, E. Roth, K. Becker, M. Reinacher and E. Eigenbrodt, A study of the activities of carbohydrate metabolizing enzymes and the levels of carbohydrate metabolites and amino acids in normal liver and in hepatocellular carcinoma, in: “Experimental Hepatocarcinogenesis”, M. Roberfroid and V. Preat, eds., Plenum Press, New York, (1988).Google Scholar
  13. 13.
    A. M. Rutenburg, H. Kim, H. W. Fischbein, J. S. Hanker, H. L. Wasserkrug and A. M. Seligman, Histochemical and ultrastructural demonstration of γ-glutamyl transpeptidase activity, J. Histochem. Cytochem. 17:517 (1969).PubMedCrossRefGoogle Scholar
  14. 14.
    Z. Lojda, R. Gossrau and T. H. Schiebler, “Enzyme Histochemistry: A Laboratory Method”, Springer-Verlag, Berlin, Heidelberg, New York (1979).CrossRefGoogle Scholar
  15. 15.
    G. Fischer, M. Domingo, D. Lodder, N. Katz, M. Reinacher and E. Eigenbrodt, Immunohistochemical demonstration of decreased L-pyruvate kinase in enzyme altered rat liver lesions produced by different carcinogens, Virchows Arch. B 53:359 (1987).Google Scholar
  16. 16.
    E. Eigenbrodt and W. Schoner, Purification and properties of the pyruvate kinase isoenzymes type L and M from chicken liver, Hoppe-Seyler’s Z. Physiol. Chem. 358:1033 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    A. McPherson, D. Burkey and P. Stankiewicz, Crystalline alkaline form fructose-1,6-dephosphatase, J. Biol. Chem., 252:7031 (1977).PubMedGoogle Scholar
  18. 18.
    M. Zelewski and J. Swierczynski, The effect of clofibrate feeding on the NADP-linked dehydrogenase activity in rat tissue, Biochim. Biophys. Acta 758:152 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    G. W. Löhr and H. D. Waller, Glucose-6-phosphat-Dehydrogenase, in: “Methoden der enzymatischen Analyse”, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  20. 20.
    U. Bergmeyer, K. Grawehn and M. Graßl, Enolase, in: “Methoden der Enzymatischen Analyse”, H. Bergmeyer, ed., Verlag Chemie, Weinheim, (1974).Google Scholar
  21. 21.
    U. Bergmeyer, K. Grawehn and M. Graßl, Lactat-Dehydrogenase, in: “Methoden der enzymatischen Analyse”, H. Bergmeyer, ed., Verlag Chemie, Weinheim (1974).Google Scholar
  22. 22.
    J. P. Persijn and W. Van der Silk, L-γ-Glutamyltransferase, J. Clin. Chem. Clin. Biochem. 14:421 (1976).PubMedGoogle Scholar
  23. 23.
    German Society for Clinical Chemistry, Alkaline “Optimierte Standard-Gesellschaft für Klinische Chemie (1976).Google Scholar
  24. 24.
    J. K. Reddy, M. S. Rao, D. L. Azarnoff and S. Sell, Mitogenic and carcinogenic effects of a hypolipidaemic peroxisome proliferator (Wy-14, 643) in rat and mouse liver, Cancer Res. 39:151 (1979).Google Scholar
  25. 25.
    M. S. Rao, N. D. Lalweni and J. K. Reddy, Sequential histologic study of rat liver during peroxisome proliferator [4-Chloro-6-(2, 3-xylidino)-2-pyrimidinyl-thio]-acetic acid (Wy-14, 643)-induced carcinogenesis, J. Natl. Cancer Inst. 73:983 (1984).PubMedGoogle Scholar
  26. 26.
    A. B. Deangelo and C. T. Garret, Inhibition of development of praeneoplastic lesions in the livers of rats fed a weakly carcinogenic environmental contaminant, Cancer Letters 20:199 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    M. S. Rao, N. D. Lalwani, D. S. Scarpelli and J. K. Reddy, The absence of GGT activity in putative praeneoplastic lesions and in hepatocellular carcinomas induced in rats by the hypolipidaemic methode” conforming to the recommendations of the Deutsche peroxisome proliferator Wy-14, 643, Carcinogenesis 3:1231 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Best and C. Duncan, Lipid effects of a phenolic ether (Su-13437) in the rat. Comparison with CPIB, Artherosclerosis 12:185 (1970).CrossRefGoogle Scholar
  29. 29.
    M. Reinacher, E. Eigenbrodt, U. Gerbracht, G. Zenk, I. Timmermann-Trosiener, P. Bentley, F. Waechter and R. Schulte-Hermann, Pyruvate kinase isozymes in altered foci and carcinoma of rat liver, Carcinogenesis 7:1351 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    G. M. Ledda-Columbano, A. Columbano, S. Dessi, P. Coni, C. Chiodino and P. Pani, Enhancement of cholesterol synthesis and pentose phosphate pathway activity in proliferating hepatocyte nodules, Carcinogenesis 6:1371 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    M. A. Moore, H. Tsuda and N. Ito, Dehydrogenase histochemistry of N-ethyl-N-hydroxyethylnitrosamine-induced focal liver lesions in the rat increase in NADPH-generating capacity, Carcinogenesis 7:339 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    D. Mayer, M. Moore and P. Bannasch, Biochemical correlation of glycogen content and activity of some enzymes of carbohydrate metabolism in rat liver during early stages of carcinogenesis, J. Cancer Res. Clin. Oncol. 104:99 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Ulrich Gerbracht
    • 1
  • Günter Weiße
    • 2
  • Bernd Schlatterer
    • 3
  • Manfred Reinacher
    • 4
  • Rolf Schulte-Hermann
    • 5
  • Erich Eigenbrodt
    • 1
  1. 1.Institut für Biochemie und EndokrinologieJustus-Liebig-Universität GiessenGermany
  2. 2.Institut für ToxicologieE. Merck DarmstadtGermany
  3. 3.UmweltbundesamtBerlinGermany
  4. 4.Institut für Veterinar-PathologieJustus-Liebig-Universität GiessenGermany
  5. 5.Institut für Tumorbiologie-KrebsforschungUniversität WienAustria

Personalised recommendations