Skip to main content
  • 96 Accesses

Abstract

Enzymes are active only when their polypeptide chain is folded into a unique globular conformation with a functional active site. In most naturally occurring enzymes, this globular conformation is only 5 to 10 kcal/mole more stable than unfolded, biologically inactive conformations (1). The conformational stability of a protein is defined as the free energy change for the reaction:

$$ \textup{folded}\;\textup{(native)}\;<----->\;\textup{unfolded\;(denatured)} $$
((1))

under ambient conditions, such as water at 25°C. The most convenient methods of estimating the conformational stability of a protein are urea (or guanidine hydrochloride (GdnHCl)) unfolding curves and thermal unfolding curves. Estimates of the conformational stability based on urea unfolding curves are designated ΔG(H2O), and estimates from thermal unfolding curves are designated ΔG(25°C). In the first part of this article, we describe how to measure ΔG(H2O) and ΔG(25°C).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.N. Pace, Conformational Stability of Globular Proteins, Trends Biochem. Sci. 15:14 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. C. Mitchinson, and J.A. Wells, Protein Engineering of Disulfide Bonds in Subtilisin BPN, Biochemistry 28:4807 (1989).

    Article  PubMed  CAS  Google Scholar 

  3. M.W. Pantoliano, M. Whitlow, J.F. Wood, S.W. Dodd, K.D. Hardman, M.L. Rollence, and P.N. Bryan, Large Increases in General Stability for Subtilisin BPN through Incremental Changes in the Free Energy of Unfolding, Biochemistry 28: 7205 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. L. Regan, and W.F. DeGrado, Characterization of a Helical Protein Designed from First Principles, Science 241:976 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. C.N. Pace, B.A. Shirley, and J.A. Thomson, Measuring the Conformational Stability of a Protein, in “Protein Structure: a practical approach” T.E. Creighton, ed., pp. 311, IRL Press, Oxford.

    Google Scholar 

  6. J.A. Thomson, B.A. Shirley, G.R. Grimsley, and C.N. Pace, Conformational Stability and Mechanism of Folding of Ribonuclease T1, J. Biol. Chem. 264:11614 (1989).

    PubMed  CAS  Google Scholar 

  7. M.M. Santoro, and D.W. Bolen, Unfolding Free Energy Changes Determined by the Linear Extrapolation Method. 1. Unfolding of Phenylmethanesulfonyl α-Chymotryspsin Using Different Denaturants, Biochemistry 27:8063 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. C.N. Pace, D.V. Laurents, and J.A. Thomson, PH Dependence of the Urea and Guanidine Hydrochloride Denaturation of Ribonuclease A and Ribonuclease T1, Biochemistry 29: in press.

    Google Scholar 

  9. W.M. Jackson, and J.F. Brandts, Thermodynamics of Protein Denaturation. A Calorimetric Study of the Reversible Denaturation of Chymostypsinogen and Conclusions Regarding the Accuracy of the Two-State Approximation, Biochemistry 9:2294 (1970).

    Article  PubMed  CAS  Google Scholar 

  10. C.N. Pace, and C. Tanford, Thermodynamics of the Unfolding of β-Lactoglobulin in Aqueous Urea Solutions between 5 and 55°C, Biochemistry 7:198 (1968).

    Article  PubMed  CAS  Google Scholar 

  11. P.L. Privalov, Stability of Proteins, Adv. Prot. Chem. 33:167 (1979).

    Article  CAS  Google Scholar 

  12. W.J. Becktel, and J.A. Schellman, Protein Stability Curves, Biopolvmers 26:1859 (1987).

    Article  CAS  Google Scholar 

  13. C.N. Pace, and D.V. Laurents, A New Method for Determining the Heat Capacity Change for Protein Folding, Biochemistry 28:2520 (1989).

    Article  PubMed  CAS  Google Scholar 

  14. B. Chen., and J.A. Schellman, Low-Temperature Unfolding of a Mutant of Phage T4 Lysozyme. 1. Equilibrium Studies, Biochemistry 28:685 (1989).

    Article  PubMed  CAS  Google Scholar 

  15. P.L. Privalov, Y. Gricko, S.Y. Venyaminov, and V.P. Kutyshenko Cold Denaturation of Myoglobin, J. Mol. Biol. 190:487 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. R.L. Baldwin, Temperature Dependence of the Hydrophobic Interaction, Proc. Nat. Acad. Sci. 83:8069 (1986).

    Article  PubMed  CAS  Google Scholar 

  17. P.L. Privalov, and S.J. Gill, Stability of Protein Structure and Hydrophobic Interaction, Adv. Prot. Chem. 39:191 (1988).

    Article  CAS  Google Scholar 

  18. R.S. Spolar, J.-H. Ha, and T.M. Record, Hydrophobie Effect in Protein Folding and Other Noncovalent Processes Involving Proteins, Proc. Nat. Acad. Sci. 86:8382 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. D.J. States, T.E. Creighton, C.M. Dobson, and M. Karplus, Conformations of Intermediates in the Folding of the Pancreatic Trypsin Inhibitor, J-Mol. Biol. 195:731 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. R.E. Johnson, P. Adams, and J.A. Rupley, Thermodynamics of Protein Cross-Links, Biochemistry 17:1479 (1978).

    Article  PubMed  CAS  Google Scholar 

  21. S.H. Lin, Y. Konishi, M.E. Denton, and H.A. Scheraga, Influence of an Extrinsic Cross-Link on the Folding Pathway of Ribonuclease A. Conformational and Thermodynamic Analysis of Cross-Linked (Lysine 7 — Lysine 41) Ribonuclease A, Biochemistry 23:5504 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. Y. Goto, M. Tsunenaga, Y. Kawata, and K. Hamaguchi, Conformation of the Constant Fragment of the Immunoglobulin Light Chain: Effect of Cleavage of the Polypeptide Chain and the Disulfide Bond, J. Biochem. 101:319 (1987).

    PubMed  CAS  Google Scholar 

  23. C.N. Pace, G.R. Grimsley, J.A. Thomson, and B.J. Barnett, Conformational Stability of Ribonuclease Tl with Zero, One, and Two Intact Disulfide Bonds, J. Biol. Chem. 263: 11820 (1988).

    PubMed  CAS  Google Scholar 

  24. M. Matsumura, G. Signor, and B.W. Matthews, Substantial Increase in Protein Stability from Multiple Disulfide Bonds, Nature. 342:291 (1989).

    Article  PubMed  CAS  Google Scholar 

  25. C.N. Pace, and G.R. Grimsley, Ribonuclease T1 is Stabilized by Cation and Anion Binding, Biochemistry 27:3242 (1988).

    Article  PubMed  CAS  Google Scholar 

  26. M. Mitani, Y. Harushima, K. Kuwajima, M. Ikeguchi, M. Sugai, and S. Sugai, Innocuous Character of EDTA as Metal-Ion Buffers in Studying Ca2+ Binding by a-Lactalbumin, J. Biol. Chem 261:8824 (1986).

    PubMed  CAS  Google Scholar 

  27. A.A. Pakula, and R.T. Sauer, Amino Acid Substitutions that Increase the Thermal Stability of the lambda Cro Protein, Proteins: Struc. Func. Gen. 5: 202 (1989).

    Article  CAS  Google Scholar 

  28. G. Das, D.R. Hickey, D. McLendon, G. McLendon, and F. Sherman, Dramatic Thermostabilization of Yeast Iso-1-Cytochrome C by an Asparagine → Isoleucine Replacement at Position 57, Proc. Nat. Acad. Sci. 86: 496 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. J.T. Kellis, K. Nyberg, and A.R. Fersht, Contribution of Hydrophobic Interactions to Protein Stability, Biochemistry 28:4914 (1988).

    Article  Google Scholar 

  30. K. Yutani, K. Ogasahara, T. Tsujita, and Y. Sugino, Dependence of Conformational Stability on Hydrophobicity of the Amino Acid Residue in a Series of Variant Proteins Substituted at a Unique Position of Tryptophan Synthase α Subunit, Proc. Nat. Acad. Sci. 84:4441 (1987).

    Article  PubMed  CAS  Google Scholar 

  31. M. Matsumura, W.J. Becktel, M. Levitt, and B.W. Matthews, Stabilization of phage T4 Lysozyme by Engineered Disulfide Bonds, Proc. Nat. Acad. Sci. 86:6562 (1989).

    Article  PubMed  CAS  Google Scholar 

  32. C.N. Pace, and T. McGrath, Substrate Stabilization of Lysozyme to Thermal and Guanidine Hydrochloride Denaturation, J. Biol. Chem. 255: 3862 (1980).

    PubMed  CAS  Google Scholar 

  33. D. Kostrewa, H.-W. Choe, U. Heinemann, and W. Saenger, Crystal Structure of Guanosine-Free Ribonuclease T1 Complexed with Vanadate (V), Suggests Conformational Change upon Substrate Binding, Biochemistry 28:7592 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. K.R. Acharya, D.I. Stuart, N.P.C. Walker, M. Lewis, and D.C. Phillips, Refined Structure of Baboon a-Lactalbumin at 1.7A Resolution, J. Mol. Biol. 208:99 (1989).

    Article  PubMed  CAS  Google Scholar 

  35. M.W. Pantoliano, M. Whitlow, J.F Wood, M.L. Rollence, B.C. Finzel, G.L. Gilliand, T.L. Poulus, and P.N. Bryan, The Engineering of Binding Affinity at Metal Binding Sites for the Stabilization of Proteins: Subtilisin as a Test Case, Biochemlatrv 27: 8311 (1988).

    Article  CAS  Google Scholar 

  36. R. Kuroki, Y. Taniyama, C. Seko, H. Nakmura, M. Kikuchi, and M. Ikehara, Design and Creation of a Ca2+ Binding Site in Human Lysozyme to Enhance Structural Stability, Proc. Nat. Acad. Sci. 86:6903 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. A.L. Swain, R.H. Kretsinger, and E.L. Amma, Restrained Least Squares Refinement of Native (Calcium) and Cadmium-substituted Carp Parvalbumin Using X-ray Crystallographic Data at 1.6Å Resolution, J_ Biol. Chem. 264:16620 (1989).

    PubMed  CAS  Google Scholar 

  38. M. Fujinaga, T.J. Delbaere, G.D. Brayer, and M.N.G. James, Refined Structure of a-Lytic Protease at 1.7A Resolution, J. Mol. Biol. 183:479 (1985).

    Article  Google Scholar 

  39. J.W. Pflugrath, and F.A. Quiocho, Sulphate Sequestered in the Sulphate-Binding Protein of Salmonella Typhimurium is bound Solely by Hydrogen Bonds, Nature 314:257 (1985).

    Article  PubMed  CAS  Google Scholar 

  40. T. Alber, Mutational Effects on Protein Stability, Ann. Rev. Biochem. 58:765 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. B.A. Shirley, P. Stanssens, J. Steyaert, and C.N. Pace, Conformational Stability and Activity of Ribonuclease T1 and Mutants: Gin 25 → Lys, Glu 58 → Ala, and the Double Mutant, J. Biol. Chem. 264:11621 (1989).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pace, C.N. (1990). Increasing Enzyme Stability. In: Baldwin, T.O., Raushel, F.M., Scott, A.I. (eds) Chemical Aspects of Enzyme Biotechnology. Industry-University Cooperative Chemistry Program Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9637-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9637-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9639-1

  • Online ISBN: 978-1-4757-9637-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics