Proline Isomerization and Protein Folding

  • Christy MacKinnon
  • Sudha Veeraraghavan
  • Isabelle Kreider
  • Michael J. Allen
  • John R. Liggins
  • Barry T. Nall
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


A reaction as complex as folding of a protein must involve a variety specific chemical processes. Hydrogen bonds and salt bridges are formed, and perhaps broken and interchanged. Solvent-induced hydrophobic associations may occur, or even a general hydrophobic collapse of the polypeptide to a less than fully ordered “globule”. Polypeptide chains might become entangled with each other or with other chains and have to extricate themselves prior to further folding. Intricate shapes and structures may be constructed only to partially or fully unravel on transformation into other more stable forms. The objective of much experimental work on the process of folding has been to obtain direct evidence for some of these expectations. This has been a major challenge since many aspects of folding, rather than having the expected complexity, are, instead, well described by the simplest of chemical mechanisms: a two state process.


Mutant Protein Slow Phasis Folding Intermediate Peptidyl Prolyl Isomerase Horse Cytochrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blond-Elguindi, S., & Goldberg, M. E. (1990) Biochemistry 29, 2409–2417.PubMedCrossRefGoogle Scholar
  2. Brandts, J. F., Halvorson, H. R., & Brennan, M. (1975) Biochemistry 14, 4953–4963.PubMedCrossRefGoogle Scholar
  3. Cook, K. H., Schmid, F. X., & Baldwin, R. L. (1979) Proc. Natl. Acad. Sci. USA 76, 6157–6161.PubMedCrossRefGoogle Scholar
  4. Creighton, T. E. (1978) J Mol Biol 125, 401–406.PubMedCrossRefGoogle Scholar
  5. Cutler, R. J., Pielak, G. J., Mauk, A. G., & Smith, M. (1987) Protein Eng. 1, 95–99.PubMedCrossRefGoogle Scholar
  6. Dickerson, R. E. (1972) Sci. Am. 226, 58–72.PubMedCrossRefGoogle Scholar
  7. Dohne, S. M., Elove, G. A., Roder, H., & Nall, B. T. (1989) Biophys. J. 55, 557a.CrossRefGoogle Scholar
  8. Englander, S. W., & Kallenbach, N. R. (1984) Quart. Rev. Biophys. 16, 531–625.Google Scholar
  9. Ernst, J. F., Hampsey, D. M., Stewart, J. W., Rackovsky, S., Goldstein, D., & Sherman, F. (1985) J. Biol. Chem. 260, 13225–13236.PubMedGoogle Scholar
  10. Feng, Y., Roder, H., & Englander, S. W. (1990) Biophys. J. 57, 15–22.PubMedCrossRefGoogle Scholar
  11. Feng, Y., Roder, H., Englander, S. W., Wand, A. J., & Di Stefano, D. L (1989) Biochemistry 28, 195–203.PubMedCrossRefGoogle Scholar
  12. Fischer, G., & Bang, H. (1985) Biochim. Biophys. Acta 828, 39–42.PubMedCrossRefGoogle Scholar
  13. Fischer, G., Bang, H., & Mech, C. (1984) Biomed. Biochim. Acta 43, 1101–1111.PubMedGoogle Scholar
  14. Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., & Schmid, F. (1989) Nature 337, 476–478.PubMedCrossRefGoogle Scholar
  15. Hampsey, D. M., Das, G., & Sherman, F. (1986) J. Biol. Chem. 261, 3259–3271.PubMedGoogle Scholar
  16. Kim, P. S., & Baldwin, R. L (1980) Biochemistry 19, 6124–6129.PubMedCrossRefGoogle Scholar
  17. Kim, P. S., & Baldwin, R. L. (1982) Annu. Rev Biochem. 51, 459–489.PubMedCrossRefGoogle Scholar
  18. Lang, K., Schmid, F., & Fischer, G. (1987) Nature 329, 268–270.PubMedCrossRefGoogle Scholar
  19. Leung, C. J., Nall, B. T., & Brayer, G. D. (1989) J. Mol. Biol. 206, 783–785.PubMedCrossRefGoogle Scholar
  20. Louie, G. V., & Brayer, G. D. (1989) J. Mol. Biol. submitted.Google Scholar
  21. Louie, G. V., Hutcheon, W. L B., & Brayer, G. D. (1988) J. Mol. Biol. 199, 295–314.PubMedCrossRefGoogle Scholar
  22. Murphy, M. E. P., & Brayer, G. D. (1990) J. Mol. Biol. submitted.Google Scholar
  23. Murry-Brelier, A., & Goldberg, M. E. (1988) Biochemistry 27, 7633–7640.PubMedCrossRefGoogle Scholar
  24. Nall, B. T. (1983) Biochemistry 22, 1423–1429.PubMedCrossRefGoogle Scholar
  25. Nall, B. T. (1986) Biochemistry 25, 2974–2978.PubMedCrossRefGoogle Scholar
  26. Nall, B. T., & Landers, T. A. (1981) Biochemistry 20, 5403–5411.PubMedCrossRefGoogle Scholar
  27. Nall, B. T., Osterhout, J. J., Jr., & Ramdas, L. (1988) Biochemistry 27, 7310–7314.PubMedCrossRefGoogle Scholar
  28. Nall, B. T., Zuniga, E. H., White, T. B., Wood, L C., & Ramdas, L. (1989) Biochemistry 28, 9834–9839.PubMedCrossRefGoogle Scholar
  29. Osterhout, J. J., Jr., Muthukrishnan, K., & Nall, B. T. (1985) Biochemistry 24, 6680–6684.PubMedCrossRefGoogle Scholar
  30. Osterhout, J. J., Jr., & Nall, B. T. (1985) Biochemistry 24, 7999–8005.PubMedCrossRefGoogle Scholar
  31. Pearce, L. L, Gartner, A. L., Smith, M., & Mauk, A. G. (1989) Biochemistry 28, 3152–3156.PubMedCrossRefGoogle Scholar
  32. Pielak, G., Mauk, A. G., & Smith, M. (1985) Nature 313, 152–154.PubMedCrossRefGoogle Scholar
  33. Pielak, G. J., Boyd, J., Moore, G. R., & Williams, R. J. P. (1988) Eur. J. Biochem. 177, 167–177.PubMedCrossRefGoogle Scholar
  34. Ramdas, L. (1987) Ph.D. Thesis, University of Texas Health Science Center at Houston, TX.Google Scholar
  35. Ramdas, L, & Nall, B. T. (1986) Biochemistry 25, 6959–6964.PubMedCrossRefGoogle Scholar
  36. Ramdas, L, & Nall, B. T. (1987) J. Cell. Biochem. Supplement 11C, 218.Google Scholar
  37. Roder, H., Elove, G. A., & Englander, S. W. (1988) Nature 335, 700–704.PubMedCrossRefGoogle Scholar
  38. Schechter, E., & Saludjian, P. (1967) Biopolymers 5, 788–790.CrossRefGoogle Scholar
  39. Schmid, F. X., & Baldwin, R. L (1979) J. Mol. Biol. 135, 199–215.PubMedCrossRefGoogle Scholar
  40. Schweingruber, M. E., Stewart, J. W., & Sherman, F. (1979) J. Biol. Chem. 254, 4132.PubMedGoogle Scholar
  41. Sherman, F., & Stewart, J. W. (1978) in Biochemistry and Genetics of Yeast (Bacila, M., Horecker, B. L, & Stoppani, A. D. M., Ed.) pp. 273, Academic Press, New York.CrossRefGoogle Scholar
  42. Wand, A. J., Di Stefano, D. L., Feng, Y., Roder, H., & Englander, S. W. (1989) Biochemistry 28, 186–194.PubMedCrossRefGoogle Scholar
  43. White, T. B., Berget, P. B., & Nall, B. T. (1987) Biochemistry 26, 4358–4366.PubMedCrossRefGoogle Scholar
  44. Wood, L. C., White, T. B., Ramdas, L, & Nall, B. T. (1988) Biochemistry 27, 8562–8568.PubMedCrossRefGoogle Scholar
  45. Zuniga, E. H., & Nall, B. T. (1983) Biochemistry 22, 1430–1437.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Christy MacKinnon
    • 1
  • Sudha Veeraraghavan
    • 1
  • Isabelle Kreider
    • 1
  • Michael J. Allen
    • 1
  • John R. Liggins
    • 1
  • Barry T. Nall
    • 1
  1. 1.Department of BiochemistryUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations