On the Methylation Process and Cobalt Insertion in Cobyrinic Acid Biosynthesis

  • G. Müller
  • K. Hlineny
  • E. Savvidis
  • F. Zipfel
  • J. Schmiedl
  • E. Schneider
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


Following the demonstration by Bernhauer and co-workers that vitamin B12 is formed from cobyrinic acid, which acts as the late tetrapyrrolic precursor1, our studies have been concerned with the problem of how cobyrinic acid is biosynthesized using the following approaches: (1) Seeking and trapping of intermediates from radioactively labeled precursors. (2) Investigations on the utilization of the trapped and labeled compounds for cobyrinic acid biosynthesis. (3) Structural elucidation of the trapped intermediates. (4) Verification of single reactions of established steps with the appropriate purified enzymes. The biological systems (i.e. intact cells, cell-free extracts and the partially purified enzyme systems thereof which can synthesize cobyrinic acid) necessary to perform suitable experiments on this theme were prepared from the corrinoid producers Propionibacterium shermanii and Clostridium tetanomorphum.


Methylation Sequence Double Label Technique HOOC COOH Introduce Methyl Group Clostridium Tetanomorphum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Bernhauer, F. Wagner, H. Michna, P. Rapp and H. Vogelmann, Biosynthesewege von der Cobyrinsäure zur Cobyrsäure und Cobinamid bei Propionibacterium shermanii, Hoppe Seylers Z. Physiol. Chem. 349: 1297 (1968).CrossRefGoogle Scholar
  2. 2.
    A. I. Scott, N. Georgopapadakou, K. S. Ho, S. Klioze, E. Lee, S. L. Lee, G. H. Jemme III, C. A. Townsend and I. A. Armitage, Concerning the Intermediacy of Uro’gen III and of a Heptacarboxylic Uro’gen in Corrinoid Biosynthesis, J. Am. Chem. Soc. 97: 2548 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    H.-O. Dauner and G. Müller, Bildung von Cobyrinsäure Mittels eines Zellfreien Systems aus Clostridium Tetanomorphum, Hoppe Seylers, Z. Physiol. Chem. 356: 1353 (1975).CrossRefGoogle Scholar
  4. 4.
    A. R. Battersby, M. Ihara, E. McDonald, F. Satoh and D. C. Williams, Derivation of Cobyrinic Acid from Uroporphyrinogen III, J. Chem. Soc, Chem. Commun. 436 (1975).Google Scholar
  5. 5.(a)
    A. R. Battersby, Recent Biosynthetic Researches on Vitamin B12, in: “Vitamin B12” eds. B. J. Zagalak and W. Friedrich, de Gruyter, Berlin, p. 217 (1979).Google Scholar
  6. (b).
    A. I. Scott, Intermediary metabolism of Cobyrinic Acid Biosynthesis, ibid p.248.Google Scholar
  7. (c).
    G. Müller, R. Deeg, K. D. Gneuss, G. Gunzer and H.-P. Kriemler, On the Methylation Process of Cobyrinic Acid Biosynthesis, ibid p.279.Google Scholar
  8. (d).
    V. Ya. Bykhovsky, Biogenesis of Tetrapyrrole Compounds and Regulations, ibid p.293.Google Scholar
  9. (e).
    M. Imfield, D. Arigoni, R. Deeg and G. Müller, Faktor I ex Clostridium tetanomorphum; Proof of Structure and Relationship to Vitamin B12 Biosynthesis, ibid p.316.Google Scholar
  10. 6.(a)
    R. Deeg, H.-P. Kriemler, K.-H. Bergmann and G. Müller, Neuartige, methylierte Hydroporphyrine und deren Bedeutung bei der Cobyrinsäure-Bildung, Hoppe Seylers Z. Physiol. Chem. 358: 339 (1977).PubMedCrossRefGoogle Scholar
  11. (b).
    K. H. Bergmann, R. Deeg, K.-D. Gneuss, H.-P. Kriemler and G. Müller, Gewinnung von Zwischenprodukten der Cobyrinsäure-Biosynthese mit Zellsuspensionen von Propionibacterium shermanii, Hoppe Seylers Z. Physiol. Chem. 358: 1315 (1977).PubMedCrossRefGoogle Scholar
  12. 7.
    G. Müller, K. D. Gneuss, H.-P. Kriemler, A. J. Irwin and A. I. Scott, Structure of Factor III, A Trimethylisobacteriochlorin Intermediate in the Biosynthesis of Vitamin B12, Tetrahedran Suppl. 37: 81 (1981).CrossRefGoogle Scholar
  13. 8.
    A. R. Battersby, K. Frobel, F. Hammerschmidt and C. Jones, Isolation of 15, 23-Dihydrosirohydrochlorin, a Biosynthetic Intermediate, J. Chem. Soc, Chem. Commun. 455 (1982).Google Scholar
  14. 9.
    M. J. Warren, N. J. Stolowich, P. J. Santander, C. A. Roessner, B. A. Sowa and A. I. Scott, Enzymatic Synthesis of Dihydrosirohydrochlorin (precorrin-2) and of a Novel Pyrrocorphin by Uroporhyrinogen III-Methylase, FEBS Lett., 261: 76 (1990).PubMedCrossRefGoogle Scholar
  15. 10.
    F. Blanche, L. Debussche, D. Thibaut, J. Crouzet, B. Cameron, Purification and Characterization of S-Adenosyl-L-Methionine: Uroporphyrinogen III-Methyltransferase from Pseudomonas Denitrificans, J. Bacteriol. 171: (1989).Google Scholar
  16. 11.
    H. C. Uzar, A. R. Battersby, T. A. Carpenter and F. J. Leeper, Development of a Pulse Labelling Method to Determine the C-Methylation Sequence for Vitamin B12, J. Chem. Soc. Perkin Trans. 1, 1689 (1987).CrossRefGoogle Scholar
  17. 12.
    A. I. Scott, H. J. Williams, N. J. Stolowich, P. Karuso, M. D. Gonzalez, G. Müller, K. Hlineny, E. Savvidis, E. Schneider, U. Traub-Eberhard and G. Wirth, Temporal Resolution of the Methylation Sequence of Vitamin B12 Biosynthesis, J. Am. Chem. Soc. 111: 1898 (1989).CrossRefGoogle Scholar
  18. 13.
    V. Rasetti A. Pfalz, C. Kratky and A. Eschenmoser, Ring Contraction of Hydroporphinoid to Corrinoid Complexes, Proc. Natl. Acad. Sci., USA, 78: 16 (1981).PubMedCrossRefGoogle Scholar
  19. 14.
    V. Rasetti, K. Hilpert, A. Fäßler, A. Pfalz and A. Eschenmoser, Dihydrocorphinol Corrin Ringkontraktion: Eine potentiell biomimetische Bildungsweise der Corrinstruktur, Angew. Chem. 93: 1108 (1981).CrossRefGoogle Scholar
  20. 15.
    A. Eschenmoser, Vitamin B12: Experimente zur Frage nach dem Ursprung seiner molekularen Struktur, Angew. Chem. 100: 5 (1988).CrossRefGoogle Scholar
  21. 16.(a)
    C. Nussbaumer, M. Imfeld, G. Wörner, G. Müller and D. Arigoni, Biosynthesis of Vitamin B12, Mode of incorporation of factor III into cobyrinic acid, Proc. Natl. Acad. Sci. USA, 78: 9 (1981).PubMedCrossRefGoogle Scholar
  22. (b).
    L. Mombelli, C. Nussbaumer, H. Weber, G. Müller and D. Arigoni, Nature of the volatile fragment generated during formation of the corrinring system, ibid p.11.Google Scholar
  23. (c).
    A. R. Battersby, M. J. Bushell, C. Jones, N. G. Lewis and P. Pfenninger, Identity of fragment extruded during ring contraction to the corrin macrocycle, ibid p.13.Google Scholar
  24. 17.
    J. Friedle, Zur C-20-Eliminierung bei der Cobyrinsäure-Biosynthese, Dissertation, Universität Stuttgart (1982).Google Scholar
  25. 18.
    A. I. Scott, N. E. Mackenzie, P. J. Santander, P. E. Fagerness, G. Müller, E. Schneider, R. Sedlmeier and G. Wörner, Biosynthesis of Vitamin B12: Timing of the Methylation Steps between Uro’gen III and Cobyrinic Acid, Biorg. Chem. 12: 356 (1984).CrossRefGoogle Scholar
  26. 19.
    G. Gunzer, Enzymatische Studien für die Aufgliederung des Gesamtvorgangs der mikrobiellen Cobyrinsäure-Bildung in Einzelreaktionen, Dissertation, Universität Stuttgart (1978).Google Scholar
  27. 20.
    H. Weber, Chemie und Biochemie Methylierter Isobacteriochlorine, Dissertation, Universität Stuttgart (1982).Google Scholar
  28. 21.
    A. I. Scott, H. J. Williams, N. J. Stolowich, P. Karuso, M. D. Gonzalez, G. Müller, K. Hlineny, E. Savvidis, E. Schneider, U. Traub-Eberhard and G. Wirth, Temporal Resolution of the Methylation Sequence of Vitamin B12 Biosynthesis, J. Am. Chem. Soc. 111: 1897 (1989).CrossRefGoogle Scholar
  29. 22.
    F. Blanche, S. Manela, D. Thibaut, C. L. Gibson, F. J. Leeper and A. R. Battersby, When is the 12 β-Methyl Group Generated by Acetate Decarboxylation, J. Chem. Soc., Chem. Commun., 1117 (1988).Google Scholar
  30. 23.
    B. Dresow, G. Schlingmann, L. Ernst and V. B. Koppenhagen, Extracellular Metal-free Corrinoids from Rhodopseudomonas spheroides, J. Biol. Chem. 255: 7637 (1980).PubMedGoogle Scholar
  31. 24.
    J. Friedle, Enzymatische Studien zur Vitamin B12-Bildung, Diplomarbeit, Universität Stuttgart (1979).Google Scholar
  32. 25.
    T. E. Podschun and G. Müller, Hydrogenobyrinsäure und Vitamin B12, Angew. Chem. 97: 63 (1985).CrossRefGoogle Scholar
  33. 26.
    C. Nussbaumer and D. Arigoni, Einfacher Zugang zu 5-Nor-und 5, 15-Bisnorcobester, Angew. Chem. 95: 746 (1983).CrossRefGoogle Scholar
  34. 27.
    C. Nussbaumer, Zur chemischen Reaktivität und zur Biosynthese der Cobyrinsäure, Dissertation, ETH Zürich, Nr. 7623 (1984).Google Scholar
  35. 28.
    J. Bier, Untersuchungen zur Auffindung neuer Substrate und Enzyme der Cobyrinsäure-Biosynthese, Dissertation, Universität Stuttgart (1986).Google Scholar
  36. 29.
    H. C. Uzar and A. R. Battersby, Vitamin B12: Order of the Later C-Methylation Steps, J. Chem. Soc, Chem. Commun., 585 (1985).Google Scholar
  37. 30.
    G. Müller, J. Schmiedel, E. Schneider, R. Sedlmeier, G. Wörner, A. I. Scott, H. J. Williams, P. E. Fagerness, N. E. Mackenzie and H. P. Kriemler, Structure of Factor S3, a Metabolite Derived from Uroporphyrinogen I, J. Am. Chem. Soc. 108: 7875 (1986).CrossRefGoogle Scholar
  38. 31.
    G. Müller, J. Schmiedl, L. Savvidis, G. Wirth, A. I. Scott, P. J. Santander, H. J. Williams and N. J. Stolowich, Factor S1, a Natural Corphin from Propionibacterium shermanii, J. Am. Chem. Soc. 109: 6902 (1987).CrossRefGoogle Scholar
  39. 32.
    R. Deeg, Zur Vitamin B12-Biosynthese, Dissertation, Universität Stuttgart (1978).Google Scholar
  40. 33.
    For review: A. I. Scott: in Chapter 9 of this volume; see also A. I. Scott Accounts Chem. Research (1990) in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • G. Müller
    • 1
  • K. Hlineny
    • 1
  • E. Savvidis
    • 1
  • F. Zipfel
    • 1
  • J. Schmiedl
    • 1
  • E. Schneider
    • 1
  1. 1.Institut für Organische Chemie, Biochemie and IsotopenforschungUniversität StuttgartStuttgart 1Federal Republic of Germany

Personalised recommendations