Structure-Function Relationships in Mandelate Racemase and Muconate Lactonizing Enzyme

  • John A. Gerlt
  • George L. Kenyon
  • John W. Kozarich
  • David T. Lin
  • David C. Neidhart
  • Gregory A. Petsko
  • Vincent M. Powers
  • Stephen C. Ransom
  • Amy Y. Tsou
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)

Abstract

Strains of Pseudomonads show considerable metabolic diversity by utilizing a large variety of organic compounds as sole carbon and energy sources. This metabolic diversity has both provided enzymologists with many new and unusual enzymes for mechanistic scrutiny and raised questions regarding the evolutionary pathways by which the metabolic diversity could have arisen. Our laboratories are interested in mechanistic, structural, and molecular biological aspects of the metabolism of mandelic acid by Pseudomonas putida. Both enantiomers of mandelic acid are oxidatively degraded to benzoic acid by the enzymes of the mandelate pathway (Figure 1), and benzoic acid, in turn, is oxidatively degraded to intermediates of the citric acid cycle by the enzymes of the β-ketoadipate pathway (Figure 2). In this chapter we summarize our recent observations on the mechanism of the reaction
Figure 1

The mandelate pathway

catalyzed by mandelate racemase and the structural and mechanistic relationship of this enzyme to muconate lactonizing enzyme, an enzyme central to the catabolism of benzoic acid and, therefore, mandelic acid. We have made the unexpected discovery that these enzymes are certainly divergently related and anticipate that molecular biological methods can be used to change muconate lactonizing enzyme into mandelate racemase and vice versa.

Keywords

Mandelic Acid Triose Phosphate Isomerase Active Site Cleft Carbanionic Intermediate Racemase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banner, D. W., Bloomer, A. C, Petsko, G. A., Phillips, D. C, Pogson, C. I., and Wilson, I. A. (1975) Nature 255, 609.PubMedCrossRefGoogle Scholar
  2. Goldman, A., Ollis, D. L., and Steitz, T. A. (1987) J. Mol. Biol. 194, 143.PubMedCrossRefGoogle Scholar
  3. Kenyon, G. L., & Hegeman, G. D. (1970) Biochemistry 9, 4036.PubMedCrossRefGoogle Scholar
  4. Lin, D. T., Powers, V. M., Reynolds, L. J., Whitman, C. P., Kozarich, J. W., and Kenyon, G. L. (1988) J. Amer. Chem. Soc. 110, 323.CrossRefGoogle Scholar
  5. Neidhart, D. J., Powers, V. M., Kenyon, G. L., Tsou, A. Y., Ransom, S. C, Gerlt, J. A., and Petsko, G. A. (1988) J. Biol. Chem. 263, 9268.PubMedGoogle Scholar
  6. Ransom, S. C., Gerlt, J. A., Powers, V. M., and Kenyon, G. L. (1988) Biochemistry 27, 540.PubMedCrossRefGoogle Scholar
  7. Tsou, A. Y., Ransom, S. C., Gerlt, J. A., Buechter, D. D., Babbitt, P. C., and Kenyon, G. L. (1990) Biochemistry, in press.Google Scholar
  8. Tsou, A. Y., Ransom, S. C., Gerlt, J. A., Powers, V. M., and Kenyon, G. L. (1989) Biochemistry 28, 969.PubMedCrossRefGoogle Scholar
  9. Whitman, C. P., and Kenyon, G. L. (1986) in Mechanisms of Enzymatic Reactions: Stereochemistry, P. A. Frey, Ed., Elsevier, New York, p.191.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • John A. Gerlt
    • 1
  • George L. Kenyon
    • 2
  • John W. Kozarich
    • 1
  • David T. Lin
    • 1
  • David C. Neidhart
    • 3
  • Gregory A. Petsko
    • 3
    • 4
  • Vincent M. Powers
    • 2
  • Stephen C. Ransom
    • 1
  • Amy Y. Tsou
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of MarylandCollege ParkUSA
  2. 2.Department of Pharmaceutical ChemistryUniversity of CaliforniaSan FranciscoUSA
  3. 3.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Rosensteil Basic Medical Sciences Research CenterBrandeis UniversityWalthamUSA

Personalised recommendations