On the Mechanism of Action of Vitamin B12: A Non-Free Radical Model for the Methylmalonyl-CoA — Succinyl-CoA Rearrangement

  • Paul Dowd
  • Guiyong Choi
  • Boguslawa Wilk
  • Soo-Chang Choi
  • Songshen Zhang
  • Rex E. Shepherd
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)


Vitamin B12, in its coenzyme form, plays an essential role in mammalian metabolism where it serves as an obligatory cofactor for methylmalonyl-CoA mutase, which mediates the carbon skeleton rearrangement of methylmalonyl-CoA to succinyl-CoA1 (eq 1). The purpose of this enzymic rearrangement
is to conduct propionate, by way of methylmalonate and succinate, to the Krebs cycle and the main stream of biochemical metabolism.


Cyclic Product Relative Peak Area Observe Rate Constant Product Succinate Methyl Malonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. (1).
    J. Katz and I. L. Chaikoff, J. Am. Chem. Soc. 77, 2659 (1955).CrossRefGoogle Scholar
  2. M. Flavin and S. Ochoa, J. Biol. Chem., 229, 965 (1957).PubMedGoogle Scholar
  3. E. R. Stadtman, P. Overath, H. Eggerer and F. Lynen, Biochem. Biophys. Res. Commun., 2, 1 (1960).PubMedCrossRefGoogle Scholar
  4. J. R. Stern, and D. L. Friedman, Biochem. Biophys. Res. Commun., 2, 82 (1960).CrossRefGoogle Scholar
  5. H. Eggerer, P. Overath, F. Lynen and E. R. Stadtman, Biochem. Biophys. Res. Commun., 82, 2643 (1960).Google Scholar
  6. S. Gurnani, S. P. Mistry, and B. C. Johnson, Biochim. Biophys. Acta, 38, 187 (1960).PubMedCrossRefGoogle Scholar
  7. R. Stjernholm and H. G. Wood, Froc. Nat. Acad. Sci., USA, 47, 303 (1961).CrossRefGoogle Scholar
  8. (2).
    For cobalt-based methylmalonate models see: (a) P. Dowd and M. Shapiro, Tetrahedron, 40, 3063 (1984)CrossRefGoogle Scholar
  9. (b).
    P. Dowd and M. Shapiro, J. Am. Chem. Soc., 98, 3724 (1976).CrossRefGoogle Scholar
  10. (c).
    G. Bidlingmaier, H. Flohr, U. M. Kempf, T. Krebs and J. Rétey, Angezv. Chem. Int. Ed. Engl., 15, 613 (1976).CrossRefGoogle Scholar
  11. (d).
    H. Flohr, W. Pannhorst and J. Rétey, Helv. Chim. Acta., 61, 1565 (1978).CrossRefGoogle Scholar
  12. (e).
    J. Rétey, in Vitamin B 12, B. Zagalak, W. Friedrich, Eds.; Walter de Gruyter, Berlin, pp 439–460 (1979).Google Scholar
  13. (f).
    A. I. Scott and K. Kang, J. Am. Chem. Soc., 99, 1997 (1977)PubMedCrossRefGoogle Scholar
  14. (g).
    A. I. Scott, J. Kang, D. Dalton and S. K. Chung, J. Am. Chem. Soc, 100, 3603 (1978)CrossRefGoogle Scholar
  15. (h).
    A. I. Scott, J. Kang, P. Dowd and B. K. Trivedi, Bioorganic Chem., 9, 426 (1980)CrossRefGoogle Scholar
  16. (i).
    A. L Scott, J. B. Hansen and S. K. Chung, J. Chem. Soc, Chem. Comm., 388 (1980).Google Scholar
  17. (3)(a).
    J. Halpern, Science, (Washington, D. C.) 227, 869 (1985).CrossRefGoogle Scholar
  18. (b).
    S. Wollowitz and J. Halpern, J. Am. Chem. Soc, 110, 3112 (1988).CrossRefGoogle Scholar
  19. (c).
    S. Wollowitz and J. Halpern, J. Am. Chem. Soc, 106, 8319 (1984).CrossRefGoogle Scholar
  20. (4).
    G. Choi, S.-C. Choi, A. Galan, B. Wilk and P. Dowd, Proc Nat. Acad Sci. USA, in press.Google Scholar
  21. (5).
    The structure of this product was established by spectroscopic comparison with an independently synthesized authentic sample.Google Scholar
  22. (6).
    See: (a) A. L. J. Beckwith, Tetrahedron, 37, 3078 (1981).CrossRefGoogle Scholar
  23. (b).
    A. L. J. Beckwith and C. H. Schlesser, Tetrahedron, 41, 3930 (1985).CrossRefGoogle Scholar
  24. (c).
    A. L. J. Beckwith and G. Moad, J. Chem. Soc, Chem. Commun.,472 (1974).Google Scholar
  25. (7).
    See, for example, R. Breslow and P. L. Khanna, J. Am. Chem. Soc., 98, 1297 (1976).PubMedCrossRefGoogle Scholar
  26. (8).
    A. Ghosez, T, Göbel and B, Giese, Chem. Ber., 121, 1807 (1988).CrossRefGoogle Scholar
  27. (9).
    At 25 °C. the parent 5-hexenyl radical cyclizes 40 times faster than the parent 6-heptenyl radical.6b.Google Scholar
  28. (10).
    C. Chatgillaloglu, K. U. Ingold, and J. C Scaiano, J. Am. Chem. Soc, 103, 7739 (1981).CrossRefGoogle Scholar
  29. (11).
    J. J. B. Cannata, A. Focasi, Jr., R. Mazumder, R. C. Warner, and S. Ochoa, J. Biol. Chem., 240, 3249 (1965).PubMedGoogle Scholar
  30. (12).
    W. W. Miller and J. H. Richards, J. Am. Chem. Soc., 91, 1498 (1969).PubMedCrossRefGoogle Scholar
  31. (13).
    This research was generously supported by the National Institute for General Medical Sciences of the National Institutes of Health under Grant GM 19906.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Paul Dowd
    • 1
  • Guiyong Choi
    • 1
  • Boguslawa Wilk
    • 1
  • Soo-Chang Choi
    • 1
  • Songshen Zhang
    • 1
  • Rex E. Shepherd
    • 1
  1. 1.Department of ChemistryUniversity of PittsburghPittsburghUSA

Personalised recommendations