Skip to main content

Design and Development of Enzymatic Organic Synthesis

  • Chapter
Chemical Aspects of Enzyme Biotechnology

Abstract

The rate acceleration and selectivity of various enzymatic reactions operated under mild conditions are the major attractive features of enzymes for use as catalysts in organic synthesis. Many natural and unnatural enzymatic reactions have been demonstrated for multigram scale synthesis of chiral organic molecules1. The number of enzymes isolated (about 2,500), however, only represents approximately 2% of the total number of enzymes which may exist in nature. So far, there have been only about 50 enzymes exploited for use in organic synthesis. With an increasing number of enzymes available, the synthetic methods based on enzyme catalysis are being extended from the preparation of small chiral molecules to the synthesis of more complex molecules such as oligosaccharides, polypeptides, nucleotides and their conjugates. This review describes the most recent developments in my laboratory in this area with emphasis on the synthesis of carbohydrates and polypeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.-H. Wong, Enzymatic catalysts in organic synthesis, Science 244:1145 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. M.D. Bednarski, E.S. Simon, N. Bischofberger, W-D. Fessner, M.J. Kim, W. Lees, T. Saito, H. Waldmann, G.M. Whitesides, Rabbit muscle aldolase as a catalyst in organic synthesis, J. Am. Chem. Soc. 111:627 (1989).

    Article  CAS  Google Scholar 

  3. C.H. von der Osten, A.J. Sinskey, C.F. Barbas, III, R.L. Pederson, Y.-F. Wang, C.-H. Wong, Use of a recombinant bacterial fructose-1,6-diphosphate aldolase in aldol reactions, J. Am. Chem. Soc. 111:3924 (1989).

    Article  Google Scholar 

  4. P.R. Alefounder, S.A. Baldwin, R.N. Perham, N.J. Short, Cloning, sequence analysis and over-expression of the gene for the class II fructose-1,6-biphosphate aldolase of E. coli, Biochem. J. 257:529 (1989).

    PubMed  CAS  Google Scholar 

  5. Y.L. Chen, Metalloenzyme chemistry, Ph.D. Thesis, Texas A&M University (1989).

    Google Scholar 

  6. C.F. Barbas, III, Y.-F. Wang, C.-H. Wong, Deoxyribose 5-phosphate aldolase as a synthetic catalyst, J. Am. Chem. Soc. 112:2013 (1990).

    Article  CAS  Google Scholar 

  7. C.-H. Wong, S.-T. Chen, W.J. Hennen, J.A. Bibbs, Y.-F. Wang, J.L.-C. Liu, M.W. Pantoliano, M. Whitlow, P.N. Bryan, Enzymes in organic synthesis: use of subtilisin and a highly stable mutant derived from multiple site-specific mutations, J. Am. Chem. Soc. 112:945 (1990).

    Article  CAS  Google Scholar 

  8. C.F. Barbas, III, C.-H. Wong, Papain catalyzed peptide synthesis: control of amidase activity and the introduction of unusual amino acids, J. Chem. Soc. Chem. Comm. 532-534 (1987).

    Google Scholar 

  9. J.B. West, C.-H. Wong, Use of nonproteases in peptide synthesis, Tetrahedron Lett. 28:1629 (1987).

    Article  CAS  Google Scholar 

  10. A.L. Margolin, A.M. Klibanov, Peptide synthesis catalyzed by lipases in anhydrous organic solvents, J. Am. Chem. Soc. 109:3802 (1987).

    Article  CAS  Google Scholar 

  11. CF. Barbas, III, J.R. Matos, J.B. West, C.-H. Wong, A search for peptide ligase: cosolvent-mediated conversion of proteases to esterases for irreversible synthesis of peptides, J. Am. Chem. Soc. 110:5162 (1988).

    Article  CAS  Google Scholar 

  12. J.B. West, W.J. Hennen, J.L. Lalonde, J.A. Bibbs, Z. Zhong, E.F. Meyer, C.-H. Wong, Enzymes as synthetic catalysts: mechanistic and active-site considerations of natural and modified chymotrypsin, J. Am. Chem. Soc., in press.

    Google Scholar 

  13. J.B. West, J. Scholten, N.J. Stolowich, J.L. Hogg, A.I. Scott, C-H. Wong, Modification of proteases to esterases for peptide synthesis: methylchymotrypsin, J. Am. Chem. Soc. 110:3709 (1988).

    Article  CAS  Google Scholar 

  14. R. Henderson, Catalytic activity of oc-chymotrypsin in which histidine-57 has been methylated, Biochem. J. 124:13 (1971).

    PubMed  CAS  Google Scholar 

  15. L.D. Byers, D.E. Koshland, Jr., On the mechanism of action of methyl chymotrypsin, Bioorganic Chemistry 7:15 (1978).

    Article  CAS  Google Scholar 

  16. J.D. Scholten, J.L. Hogg, F.M. Raushel, Methyl chymotrypsin catalyzed hydrolyses of specific substrate esters indicate multiple proton catalysis is possible with a modified charge relay triad, J. Am. them. Soc. 110:8246 (1988).

    Article  CAS  Google Scholar 

  17. J. Rebek, Jr., Recognition and catalysis using molecular clefts, Chemtracts — Organic chemistry 2:337 (1989).

    CAS  Google Scholar 

  18. T. Nakatsuka, T. Sasaki, E.T. Kaiser, Peptide segment coupling catalyzed by the semisynthetic enzyme subtilisin, J. Am. Chem. Soc. 109:3808 (1987).

    Article  CAS  Google Scholar 

  19. Z.-P. Wu, D. Hilvert, Conversion of a protease into an acyl transferase: selenosubtilisin, J. Am. Chem. Soc. 111:4513 (1989).

    Article  CAS  Google Scholar 

  20. F. Widmer, K. Breddam, J.T. Johansen, Carboxypeptidase Y catalyzed peptide synthesis using amino acid alkyl esters as amine components, Carlsberg Res. Comm. 45:453 (1980).

    Article  CAS  Google Scholar 

  21. H. Nakajima, S. Kitabatake, R. Tsurutani, K. Yamamoto, I. Tomioka, K. Imahori, Peptide synthesis catalyzed by aminoacyl-tRNA synthetases from Bacillus stearothermophilus, Int. J. Peptide Protein Res. 28:179 (1986).

    Article  CAS  Google Scholar 

  22. W.D. Huse, L. Sastry, S.A. Iverson, A.S. Kang, M. Alting-Mees, D.R. Burton, S.J. Benkovic, R.A. Lerner, Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda, Science 246:1275 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wong, CH. (1990). Design and Development of Enzymatic Organic Synthesis. In: Baldwin, T.O., Raushel, F.M., Scott, A.I. (eds) Chemical Aspects of Enzyme Biotechnology. Industry-University Cooperative Chemistry Program Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9637-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9637-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9639-1

  • Online ISBN: 978-1-4757-9637-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics