Advertisement

Stereoselective Synthesis of Biologically and Pharmacologically Important Chemicals with Microbial Enzymes

  • Sakayu Shimizu
  • Hideaki Yamada
Part of the Industry-University Cooperative Chemistry Program Symposia book series (IUCC)

Abstract

In recent years, the most significant development in the field of synthetic chemistry has been the application of biological systems to chemical reactions. Reactions catalyzed by enzymes or enzyme systems display far greater specificities than more conventional forms of organic reactions, and of all the reactions available, some of which have been shown to be useful for synthetic or biotechnological applications.

Keywords

Optical Purity Butyl Acetate Candida Parapsilosis Glucose Dehydrogenase Molar Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Yamada and S. Shimizu, Microbial and enzymatic processes for the production of biologically and chemically useful compounds, Angew. Chem. Int. Ed. Eng. 27:622 (1988).CrossRefGoogle Scholar
  2. 2.
    H. Yamada and S. Shimizu, Biotechnology — microbial conversion, in: “Ullman’s Encyclopedia of Industrial Chemistry,” Vol. A4, VCH Verlagsgesellschaft, Weinheim, pp. 150–170 (1985).Google Scholar
  3. 3.
    S. Shimizu and H. Yamada, Microbial and enzymatic processes for the production of pharmacologically important nucleosides, Trends Biotechnol. 2:137 (1984).CrossRefGoogle Scholar
  4. 4.
    H. Yamada and S. Shimizu, Microbial enzymes as catalysts for synthesis of biologically useful compounds in: “Biocatalysts in Organic Synthesis,” J. Tramper, H. C. van der Pals and P. Linko, eds., Elsevier, Amsterdam, pp. 19–37 (1985).Google Scholar
  5. 5.
    S. Shimizu and H. Yamada, Coenzymes, in: “Biotechnology,” Vol. 4, H.-J. Rehm and G. Reed, eds., VCH Verlagsgesellschaft, Weinheim, pp. 159–184 (1986).Google Scholar
  6. 6.
    T. Nagasawa and H. Yamada, Microbial transformations of nitriles, Trends Biotechnol. 7:153 (1989).CrossRefGoogle Scholar
  7. 7.
    S. Shimizu and H. Yamada, Pantothenic acid (vitamin B5), coenzyme A and related compounds, in: “Biotechnology of vitamins, pigments and growth factors,” E. J. Vandamme, ed., Elsevier Applied Science, London, pp. 199–219 (1989).CrossRefGoogle Scholar
  8. 8.
    S. Shimizu, H. Yamada, H. Hata, T. Morishita, S. Akutsu and M. Kawamura, Novel chemoenzymatic production of D-(−)-pantoy 1 lactone, Agric. Biol. Chem. 51:289 (1987).CrossRefGoogle Scholar
  9. 9.
    S. Shimizu, H. Hata and H. Yamada, Reduction of ketopantoyl lactone to D-(−)-pantoyl lactone by microorganisms, Agric. Biol. Chem. 48:2285 (1984).CrossRefGoogle Scholar
  10. 10.
    H. Hata, S. Shimizu and H. Yamada, Enzymatic production of D-(−)-pantoyl lactone from ketopantoyl lactone, Agric. Biol. Chem. 51:3011 (1987).CrossRefGoogle Scholar
  11. 11.
    H. Hata, S. Shimizu, S. Hattori and H. Yamada, Ketopantoyl-lactone reductase from Candida parapsilosis: purification and characterization as a conjugated polyketone reductase, Biochim. Biophys. Acta 990:175 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    H. Hata, S. Shimizu, S. Hattori and H. Yamada, Stereoselective reduction of diketones by a novel carbonyl reductase from Candida parapsilosis, J. Org. Chem. in press.Google Scholar
  13. 13.
    S. Shimizu, S. Hattori, H. Hata and H. Yamada, A novel fungal enzyme, NADPH-dependent carbonyl reductase, showing high specificity to conjugated polyketones, purification and characterization, Eur. J. Biochem. 174:37 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    S. Shimizu, M. Kataoka, M. C. M. Chung and H. Yamada, Ketopantoic acid reductase of Pseudomonas ma1tophilia 845, purification, characterization and role in pantothenate biosynthesis, J. Biol. Chem. 263:12077 (1988).PubMedGoogle Scholar
  15. 15.
    M. Kataoka, S. Shimizu and H. Yamada, Novel enzymatic production of D-(−)-pantoyl lactone through the stereoselective reduction of ketopantoic acid, Agric. Biol. Chem. 54:177 (1990).CrossRefGoogle Scholar
  16. 16.
    K. Sakamoto, S. Kita, T. Morikawa, S. Shimizu, and H. Yamada, Preparation of ethyl 2′-ketopantothenate, Japanese patent application Hl-45407 (1989).Google Scholar
  17. 17.
    S. Shimizu, K. Sakamoto and H, Yamada, Studies on the enzymatic hydrolysis of pantothenate esters (in Japanese) Nippon Nogeikagaku Kaishi 62:283 (1987).Google Scholar
  18. 18.
    M. Kataoka, S. Shimizu, Y. Doi and H. Yamada, Stereoselective reduction of ethyl 2′-ketopantothenate to ethyl D-(+)-pantothenate with microbial cells as a catalyst, Appl. Environ. Microbiol. submitted.Google Scholar
  19. 19.
    M. Kataoka, S. Shimizu, Y. Doi, K. Sakamoto and H. Yamada, Microbial production of chiral pantothenonitrile through stereospecific reduction of 2′-ketopantothenonitrile, Biotechnol. Lett, submitted.Google Scholar
  20. 20.
    S. Shimizu, S. Hattori, H. Hata and H. Yamada, Stereoselective enzymatic oxidation and reduction system for the production of D-(−)-pantoyl lactone from a racemic mixture of pantoyl lactone, Enzyme Microb. Technol. 9:411 (1987).CrossRefGoogle Scholar
  21. 21.
    S. Shimizu, S. Hattori, H. Hata and H. Yamada, One-step microbial conversion of a racemic mixture of pantoyl lactone to optically active D-(−)-pantoyl lactone, Appl. Environ. Microbiol. 53:519 (1987).PubMedGoogle Scholar
  22. 22.
    J-P. Vandecasteele, Enzymatic synthesis of L-carnitine by reduction of an achiral precursor, the problem of reduced nicotinamide adenine dinucleotide recycling, Appl. Environ. Microbiol. 39:327 (1980).PubMedGoogle Scholar
  23. 23.
    M. Seim and H-P. Kleber, Synthesis L-(−)-carnitine by hydration of crotonobetaine by entrobacteria, Appl. Microbiol. Biotechnol. 27:538 (1988).Google Scholar
  24. 24.
    B. Zhou, A. S. Gopalan, F. Van Middlesworth, W-R. Shieh and C. J. Sih, Stereochemical control of yeast reductions. 1, asymmetric synthesis of L-carnitine, J. Am. Chem. Soc. 105:5925 (1983).CrossRefGoogle Scholar
  25. 25.
    C-H. Wong, D. G. Drueckhammer and H. M. Sweers, Enzyme vs. fermentative synthesis: thermostable glucose dehydroganase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis, J. Am. Chem. Soc. 107:4028 (1985).CrossRefGoogle Scholar
  26. 26.
    H. Yamada, S. Shimizu, M. Kataoka and T. Miyoshi, A novel NADPH-dependent aldehyde reductase, catalyzing asymmetric reduction of β-keto acid esters, from Sporobolomyces salmonicolor, purification and characterization, FEMS Microbiol. Lett. in press.Google Scholar
  27. 27.
    S. Shimizu and H. Yamada, Stereospecific reduction of 3-keto acid esters by a novel aldehyde reductase of Sporobolomyces salmonicolor in a water-organic solvent two phasic system, Ann. N. Y. Acad. Sci, in press.Google Scholar
  28. 28.
    S. Shimizu, M. Kataoka, M. Katoh, T. Morikawa, T. Miyoshi and H. Yamada, Stereospecific reduction of ethyl 4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water two phasic system, Appl. Environ. Microbiol. submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Sakayu Shimizu
    • 1
  • Hideaki Yamada
    • 1
  1. 1.Department of Agricultural ChemistryKyoto UniversitySakyo-ku, Kyoto 606Japan

Personalised recommendations