Adiabatic Polarization Potentials for the Water and Nitrogen Molecules. A Comparison of Large and Small Basis Sets

  • C. H. DouglassJr.
  • David A. Weil
  • Patricia A. Charlier
  • Robert A. Eades
  • Donald G. Truhlar
  • David A. Dixon


Electrostatic potentials play an important role in a wide range of chemical applications ranging from biochemistry, where they are used in modeling large-molecule interactions and reactivity, to molecular physics, where model potentials are employed in quantum mechanical studies of electron scattering. In both of these applications, the electrostatic potential is only an approximation to the true interaction potential. A better approximation to the interaction potential is obtained by allowing for charge polarization of the target molecule by the reactive partner or scattering particle. In this chapter we focus on this charge-polarization aspect, and, in particular, we study how adiabatic charge polarization affects the interaction potentials for electron-molecule scattering. The general topic of electron-molecule interaction potentials is discussed in detail in the previous chapter in this book.


Quadrupole Moment Polarization Potential Correlation Correction Test Charge Electronic Structure Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Eades, D. G. Truhlar and D. A. Dixon, Ab initio Selfconsistent-field polarizabilities and electron-molecule adiabatic polarization potentials. III. N2, Phys. Rev. A 20: 867 (1979).CrossRefGoogle Scholar
  2. 2.
    W. J. Hehre, R. F. Stewart and J. A. Pople, Self-consistent molecular-orbital methods. I. Use of Gaussian expansions of Slater-type atomic orbitals, J. Chem. Phys. 51: 2657 (1969).Google Scholar
  3. 3.
    J. W. T. Spinks and R. J. Woods, “An Introduction to Radiation Chemistry,” John Wiley and Sons, New York, NY (1964).Google Scholar
  4. 4.
    M. Anbar, Water and aqueous solutions, in: “Fundamental Processes in Radiation Chemistry,” P. Ausloos, ed., Inter-science, New York, NY (1968).Google Scholar
  5. 5.
    S. Trajmar, W. Williams and A. Kuppermann, Electron impact excitation of H20, J. Chem. Phys. 58: 2521 (1973).CrossRefGoogle Scholar
  6. 6.
    D. G. Truhlar, D. A. Dixon and R. A. Eades, Ab initio SCF polarizabilities and electron-molecule adiabatic polarization potentials. I. H2, J. Phys. B. 12: 1913 (1979).Google Scholar
  7. 7.
    D. A. Dixon, R. A. Eades and D. G. Truhlar, Ab initio SCF polarizabilities and electron-molecule adiabatic polarization potentials. II. Lie, J. Phys. B. 12: 2741 (1979).CrossRefGoogle Scholar
  8. 8.
    R. K. Nesbet, Computer programs for electronic wave function calculations, Rev. Mod. Phys. 35: 552 (1963).CrossRefGoogle Scholar
  9. 9.
    M. Dupuis, J. Rys and H. F. King, Evaluation of molecular integrals over Gaussian basis functions, J. Chem. Phys. 65:111 (1976); Program 336, in: “Quantum Chemistry Program Exchange Catalog and Procedures, Vol. X. Supplement for 1975–1978,” Indiana University, Bloomington (1978), p. 100.Google Scholar
  10. 10.
    H. King, M. Dupuis and J. Rys, Nat. Resour. Comput. Chem. Software Cat., Vol. 1, Prog. No. QH02: HONDO (1980).Google Scholar
  11. 11.
    H.-J. Werner and W. Meyer, PNO-CI and PNO-CEPA studies of electron correlation effects. V. Static dipole polarizabilities of small molecules, Mol. Phys. 31: 855 (1976).Google Scholar
  12. 12.
    H.-J. Werner and W. Meyer, Finite perturbation calculations for the static dipole polarizabilities of the first-row atoms, Phys. Rev. A 13: 13 (1976).CrossRefGoogle Scholar
  13. 13.
    M. A. Morrison and P. J. Hay, Ab initio static polarizabilities of N2 and linear symmetric CO2 in the Hartree-Fock approximation: Variation with internuclear separation, J. Phys. B 10: L647 (1977).CrossRefGoogle Scholar
  14. 14.
    C. H. Douglass, Jr., D. A. Weil, P. A. Charlier, R. A. Eades and D. A. Dixon, unpublished work.Google Scholar
  15. 15.
    S. Huzinaga, D. McWilliams and B. Domsky, Approximate atomic wave functions, J. Chem. Phys. 54: 2283 (1971).CrossRefGoogle Scholar
  16. 16.
    S. Huzinaga, Gaussian-type functions for polyatomic systems. I, J. Chem. Phys. 42: 1293 (1965).CrossRefGoogle Scholar
  17. 17.
    T. H. Dunning, Jr., Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first-row atoms, J. Chem. Phys. 53: 2823 (1970).CrossRefGoogle Scholar
  18. 18.
    G. Herzberg, Molecular spectra and molecular structure. II. Infrared and Raman spectra of polyatomic molecules, Van Nostrand, Princeton, NJ (1945).Google Scholar
  19. 19.
    P. E. Cade, K. D. Sales and A. C. Wahl, Electronic structure of diatomic molecules. III. A. Hartree-Fock wave functions and energy quantities for N2(X1E +) and N2+ (X2E +, A2Bu, B2Eu+) Molecular Ions, J. Chem. rhys. 44: 1973 (1966).Google Scholar
  20. 20.
    G. D. Zeiss, W. R. Scott, N. Suzuki, D. P. Chong and S. Langhoff, Finite-field calculations of molecular polarizabilities using field-induced polarization functions: Second-and Third-order perturbation correlation corrections to the coupled Hartree-Fock polarizabilities of H20, Mol. Phys. 5: 1543 (1979).Google Scholar
  21. 21.
    T. Koopmans, Uber die Zoordung von Wellenfunktionen un Eigenwerten zu den Einzelnen elektronen eines Atoms, Physica 1: 104 (1933).CrossRefGoogle Scholar
  22. 22.
    B. Brehm, Massenspektromische Untersuchung der Photoionization von Molekulen, Z. Naturforsch. 21a: 196 (1966).Google Scholar
  23. 23.
    R. E. Worley, Absorption spectrum of N2 in the extreme ultraviolet, Phys. Rev. 64: 207 (1943).CrossRefGoogle Scholar
  24. 24.
    A. L. McClellan, “Tables of Experimental Dipole Moments,” Freeman and Co., San Francisco, CA (1963).Google Scholar
  25. 25.
    J. Verlioeven and A. Dymanus, Magnetic properties and molecular quadrupole tensor of the water molecule by beam-maser Zeeman spectroscopy, J. Chem. Phys. 52: 3222 (1970).CrossRefGoogle Scholar
  26. 26.
    C. Cuthbertson and M. Cuthbertson, in: “Zahlenwerte and Funktionen,” H. A. Landolt and R. Bornstein, Eds., Springer-Verlag, Berlin (1962).Google Scholar
  27. 27.
    P. Swanstr$m, W. P. Kraemer and G. H. F. Diercksen, Calculation of molecular one-electron properties. A comparative study on FH and H20, Theor. Chim. Acta. 44: 109 (1977).CrossRefGoogle Scholar
  28. 28.
    W. Kutzelnigg, Pair correlation energies, in: “Methods of Electronic Structure Theory,” H. F. Schaeffer III, ed., Plenum Press, New York (1977), p. 129.CrossRefGoogle Scholar
  29. 29.
    W. Meyer, Configurational expansion by means of pseudonatural orbitals, in: “Methods of Electronic Structure Theory,” H. F. Schaeffer III, ed., Plenum Press, New York (1977), p. 413.CrossRefGoogle Scholar
  30. 30.
    I. Shavitt, The method of configuration interaction, in: “Methods of Electronic Structure Theory,” H. F. Schaefer III, ed., Plenum Press, New York (1977), p. 189.CrossRefGoogle Scholar
  31. 31.
    R. J. Bartlett, S. Wilson and D. M. Silver, Third-order many-body perturbation theory for the ground state of the carbon monoxide molecule, Int. J. Quantum Chem. 12: 737 (1977).CrossRefGoogle Scholar
  32. 32.
    R. P. Saxon, Neon polarizability and C(6) coefficient from oscillator strength distribution, J. Chem. Phys. 59: 1539 (1973).Google Scholar
  33. 33.
    T. Voegel, J. Hinze and F. Tobin, Numerical SCF method for the calculation of static polarizabilities and hyperpolarizabilities for atoms, He through Ne, J. Chem. Phys. 70: 1107 (1979).CrossRefGoogle Scholar
  34. 34.
    A. Hibbert, M. LeDourneuf and Vo Ky Lan, Atomic polarizabilities and polarized pseudo-states in the multiconfigurational approach II. First row atoms and ions, J. Phys. B 10: 1015 (1977).CrossRefGoogle Scholar
  35. 35.
    A. C. Wahl and G. Das, The multiconfiguration self-consistent field method, in: “Methods of Electronic Structure Theory,” H. F. Schaefer III, ed., Plenum Press, New York (1977), p. 51.CrossRefGoogle Scholar
  36. 36.
    W. J. Stevens and F. P. Billingsley II, Coupled multiconfigurational self-consistent-field method for atomic dipole polarizabilities. II. Application for first-row atoms, lithium through neon, Phys. Rev. A 8: 2236 (1973).CrossRefGoogle Scholar
  37. 37.
    A. D. Buckingham, R. L. Disch and D. A. Dunmur, The quadrupole moments of some simple molecules, J. Am. Chem. Soc. 90: 3104 (1968).CrossRefGoogle Scholar
  38. 38.
    E. A. McCullough, Jr., Basis set error in quadrupole moment calculations, Mol. Phys., submitted for publication.Google Scholar
  39. 39.
    G. D. Zeiss and W. J. Meath, Dispersion energy constants C6(A,B), dipole oscillator strength sums and refractivities for Li, N, 0, H2, N2, 02, NH3, H20, NO and N20, Mol. Phys. 33: 1155 (1977).Google Scholar
  40. 40.
    P. A. Christiansen and E. A. McCullough, Jr., Gaussian basis sets for polarizability calculations, Chem. Phys. Lett. 55: 439 (1978).CrossRefGoogle Scholar
  41. 41.
    M. A. Morrison and P. J. Hay, Ab initio adiabatic polarization potentials for low-energy electron-molecule and positron-molecule collisions: The e-N2 and e-0O2 systems, Phys. Rev. A 20: 740 (1979).CrossRefGoogle Scholar
  42. 42.
    M. A. Morrison and P. J. Hay, Molecular Properties of N2 and CO as functions of nuclear geometry: Polarizabilities, quadrupole moments and dipole moments, J. Chem. Phys. 70: 4034 (1979).CrossRefGoogle Scholar
  43. 43.
    F. W. Bobrowicz and W. A. Goddard III, The self-consistent field equations for generalized valence bond and open-shell Hartree-Fock wave functions, in: “Methods of Electronic Structure Theory,” H. F. Schaefer III, ed., Plenum Press, New York (1977), p. 79.CrossRefGoogle Scholar
  44. 44.
    P. Botschwina, in: “Proceedings of the Fourth Seminar on Computational Methods in Quantum Chemistry,” B. Roos and G. H. F. Dierckson, ed., Max-Planck-Institut für Physik and Astrophysik, München (1978).Google Scholar
  45. 45.
    W. Meyer, P. Botschwina, P. Rosmus and H. J. Werner, Computed physical properties of small molecules, to be published.Google Scholar
  46. 46.
    J. E. Gready, G. B. Bacskay and N. S. Hush, Finite-field method calculations of molecular polarizabilities. II. Theoretical analysis of the correlation corrections with application to some pseudo-two-electron systems, Chem. Phys. 23: 9 (1977).CrossRefGoogle Scholar
  47. 47.
    B. J. Rosenberg, W. C. Ermler and I. Shavitt, Ab initio SCF and CI studies on the ground state of the water molecule. II. Potential energy and property surfaces, J. Chem. Phys. 65: 4072 (1976).CrossRefGoogle Scholar
  48. 48.
    J. A. Pople, D. L. Beveridge and P. A. Dobosh, Approximate self-consistent molecular-orbital theory. V. Intermediate neglect of differential overlap, J. Chem. Phys. 47:2026 (1967).Google Scholar
  49. 49.
    D. G. Truhlar, F. A. Van-Catledge and T. H. Dunning, Ab initio and semiempirical calculations of the static potential for electron scattering of the nitrogen molecule, J. Chem. Phys. 57:4788 (1972), 69: 2941 (E) (1978).Google Scholar
  50. 50.
    D. G. Truhlar and F. A. Van-Catledge, Tests of the INDO/ls and INDOXI/ls methods for the calculation of the static potential for electron scattering by CO, J. Chem. Phys. 65:5536 (1976), 69: 2942 (E) (1978).Google Scholar
  51. 51.
    M. A. Brandt, D. G. Truhlar and F. A. Van-Catledge, Electron scattering by nitrogen molecules in the energy range 30–75 eV: Theory and application to elastic scattering, J. Chem. Phys. 64: 4957 (1976).CrossRefGoogle Scholar
  52. 52.
    D. G. Truhlar, Electron scattering, in: “Semiempirical Methods of Electronic Structure Theory,” G. Segal, ed., Plenum Press, New York (1977), p. 247.CrossRefGoogle Scholar
  53. 53.
    K. Onda and D. G. Truhlar, Model potentials for electron scattering: Converged close coupling calculations for the differential cross section for e-N2 at 30–50 eV, J. Chem. Phys. 69: 1361 (1978).CrossRefGoogle Scholar
  54. 54.
    D.G Truhlar and F. A. Van-Catledge, Adiabatic polarization potentials for electron scattering by N2 and CO, J. Chem. Phys. 69:3575 (1978).Google Scholar
  55. 55.
    D. G. Truhlar, D. A. Dixon, R. A. Eades, F. A. Van-Catledge and K. Onda, Polarization potentials for electron scattering, in: “Electron-Molecule and Photon-Molecule Collisions,” T. N. Rescigno, V. McKay and B. I. Schneider, eds., Plenum Press, New York (1979), p. 151.CrossRefGoogle Scholar
  56. 56.
    K. Onda and D. G. Truhlar, SCF treatment of charge polarization effects in intermediate-energy electron scattering calculations with applications to N2, J. Chem. Phys. 70: 1681 (1979).CrossRefGoogle Scholar
  57. 57.
    J. R. Rumble and D. G. Truhlar, Low-energy electron-molecule scattering comparison of coupled-channel treatments of e-N2 scattering at 13.6 eV using various approximations to the static and exchange potentials and an approximate polarization potential, J. Chem. Phys. 70:4101 (1979), 72: 3441 (E) (1980).Google Scholar
  58. 58.
    D. G. Truhlar, K. Onda, R. A. Eades and D. A. Dixon, Effective potential approach to electron-molecule scattering theory, Int. J. Quantum Chem., Symp. 13: 601 (1979).Google Scholar
  59. 59.
    K. Onda and D. G. Truhlar, Electron-molecule scattering at intermediate energy. Centrifugal-dominant channel decoupling and the INDOX polarized SCF model applied to N2 at 50 eV, J. Chem. Phys. 71: 5097 (1979).CrossRefGoogle Scholar
  60. 60.
    R. Ahlrichs, Hartree-Fock theory for negative ions, Chem. Phys. Lett. 34: 570 (1975).CrossRefGoogle Scholar
  61. 61.
    R. Bonaccorsi, E. Scrocco and J. Tomasi, A representation of the polarization term in the interaction energy between a molecule and a point-like charge, Theor. Chim. Acta 43: 63 (1976).CrossRefGoogle Scholar
  62. 62.
    C. Ghio and J. Tomasi, The protonation of three-membered ring molecules: The ab initio SCF versus the electrostatic picture of the proton approach, Theoret. Chim. Acta 30: 151 (1973).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • C. H. DouglassJr.
    • 1
  • David A. Weil
    • 1
  • Patricia A. Charlier
    • 1
  • Robert A. Eades
    • 2
  • Donald G. Truhlar
    • 2
  • David A. Dixon
    • 2
  1. 1.Chemistry DepartmentDrake UniversityDes MoinesUSA
  2. 2.Department of ChemistryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations