Effective Potentials for Intermediate-Energy Electron Scattering: Testing Theoretical Models

  • Donald G. Truhlar

Abstract

Electron scattering by molecules is important from a fundamental point of view as well as for many applications to practical concerns. An electron is the most elementary possible probe of a target. An electron scattering experiment can yield both structural and spectral information. From the chemist’s point of view the spectral information obtainable this way is often invaluable because the selection rules of photon spectroscopy are inoperative. In particular, at impact energies up to about 100 eV, many optically forbidden transitions appear very strongly in electron impact spectroscopy.1,2 The energy range from 10–100 eV is thus a very important one for chemistry, and it is often called the intermediate energy range for electron scattering.3 Data on electron scattering cross sections at energies below 100 eV are also required for understanding electron mobilities, discharges, flames, radiation chemistry and radiation biology, electron-impact laser initiation, magnetohydrodynamic power generators and other devices containing plasmas, the atmosphere of the planets (especially the upper atmosphere of the earth), the interstellar medium, and stars (including the sun).4,5

Keywords

Elastic Scattering Differential Cross Section Effective Potential Electron Scattering Exchange Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. N. Lassettre, Inelastic scattering of high-energy electrons by atmospheric gases, Can. J. Phys. 47: 1733 (1969).Google Scholar
  2. 2.
    S. Trajmar, J. K. Rice and A. Kuppermann, Electron-impact spectroscopy, Adv. Chem. Phys. 18: 15 (1970);Google Scholar
  3. S. Trajmar, Electron impact spectroscopy, Accounts Chem. Research 13: 14 (1980).Google Scholar
  4. 3.
    D. G. Truhlar, Electron scattering, in: “Semiempirical Methods of Electronic Structure Calculation, Part B: Applications,” G. A. Segal, ed., Plenum Press, New York (1977), p. 247.Google Scholar
  5. 4.
    M. A. Biondi, Atomic processes in planetary atmospheres, in: “Electron-Molecule Scattering,” S. C. Brown, ed., John Wiley and Sons, New York (1979), p. 57; A. V. Phelps, Applications and needs, ibid.,p. 81.Google Scholar
  6. 5.
    N. F. Lane, The theory of electron-molecule collisions, Rev. Mod. Phys. 52: 29 (1980).Google Scholar
  7. 5.
    R. A. Bonham and M. Fink, “High Energy Electron Scattering,” Van Nostrand Reinhold, New York (1974);Google Scholar
  8. M. Fink, P. G. Moore and D. Gregory, Precise determination of differential electron scattering cross sections. I. The apparatus and the N2 results, J. Chem. Phys. 71:5227 (1979). See also the preceeding chapter in the present volume.Google Scholar
  9. 7.
    P. Politzer and K. C. Daiker, Models for chemical reactivity, in: “The Force Concept in Chemistry,” B. M. Deb, ed., Van Nostrand Reinhold, New York, in press.Google Scholar
  10. 8.
    F. H. M. Faisal, Electron-molecule interactions. I. Single-centre wave functions and potentials, J. Phys. B 3: 636 (1970).Google Scholar
  11. 9.
    F. A. Gianturco, A new version of a program for calculating the static interaction potential between an electron and a diatomic molecule, Computer Phys. Commun. 11: 237 (1976).Google Scholar
  12. 10.
    M. A. Morrison, ALAM, a program for the calculation and expansion of molecular charge densities, Computer Phys. Commun., in press; L. A. Collins, D. W. Norcross and G. B. Schmid, VLAM, a program for computing the electron-molecule static interaction potential from a Legendre expansion of the molecular charge density, Computer Phys. Commun., in press.Google Scholar
  13. 11.
    P. G. Burke, N. Chandra and F. A. Gianturco, Electron-molecule interactions. IV. Scattering by polyatomic molecules, J. Phys. B 5: 2212 (1972);Google Scholar
  14. F. A. Gianturco and D. G. Thompson, The scattering of slow electrons by polyatomic molecules. A model study for CH,4, H2O and H2S, J. Phys. B 13: 613 (1980).Google Scholar
  15. 12.
    D. G. Truhlar, F. A. Van-Catledge and T. H. Dunning, Jr., Ab initio and semiempirical calculations of the static potential for electron scattering of the nitrogen molecule, J. Chem. Phys. 57:4788 (1972), 69: 2941 (E) (1978).Google Scholar
  16. 13.
    J. A. Pople and D. L. Beveridge, “Approximate Molecular Orbital Theory,” McGraw-Hill, New York (1970).Google Scholar
  17. 14.
    P. E. Cade, K. D. Sales and A. C. Wahl, Electronic structure of diatomic molecules. III. A Hartree-Fock wave function and energy quantities for N2(X1Eg+) and N2+(X2Eg+,A211u,B2Eu+) molecular ions, J. Chem. Phys. 44: 1973 (1966).Google Scholar
  18. 15.
    K. Onda and D. G. Truhlar, Close coupling calculations with an INDOX/ls static potential, semiclassical exchange and a semi-empirical polarization potential for electron-0O2 elastic scattering and rotational excitation, J. Phys. B 12: 283 (1979).Google Scholar
  19. 16.
    K. Onda and D. G. Truhlar, Electron-molecule scattering at intermediate energy. Centrifugal-dominant channel decoupling and the INDOX polarized SCF model applied to N2 at 50 eV, J. Chem. Phys. 71: 5097 (1979).Google Scholar
  20. 17.
    R. C. Sahni and B. C. Sawhney, Quantum mechanical treatment of molecules. I. Calculations of the potential energy curves and molecular constants of the ground and ionized states of N2, Int. J. Quantum Chem. 1: 251 (1967).Google Scholar
  21. 18.
    D. G. Truhlar, Test of Massey’s method for calculating the static potential for electron scattering by N2, Chem. Phys. Lett 15: 486 (1972).Google Scholar
  22. 19.
    D. G. Truhlar and F.A. Van-Catledge, Tests of INDO/ls and INDOXI/ls methods for the calculation of the static potential for electron scattering by CO, J. Chem. Phys. 65:553 (1976), 69: 2942 (E) (1978).Google Scholar
  23. 20.
    M. A. Morrison and L. A. Collins, Exchange in low-energy electron-molecule scattering: Free-electron-gas model exchange potentials and applications to e-H2 and e-N2 collisions, Phys. Rev. A 17: 918 (1978).Google Scholar
  24. 21.
    J. R. Rumble and D. G. Truhlar, Low-energy electron-molecule scattering: Comparison of coupled channel treatments of e-N2 scattering at 13.6 eV using various approximations to the static and exchange potentials and an approximate polarization potential, J. Chem. Phys. 70:4101 (1979), 72: 3441 (E) (1980).Google Scholar
  25. 22.
    J. R. Rumble, Jr. and D. G. Truhlar, Comparison of local exchange potentials for electron-N2 scattering, J. Chem. Phys. 72: 5223 (1980).Google Scholar
  26. 23.
    J. C. Slater, A simplification of the Hartree-Fock method, Phys. Rev. 81: 385 (1951).Google Scholar
  27. 24.
    R. Gaspar, On an approximation to the Hartree-Fock potential by a universal potential function, Acta Phys. 3: 263 (1954).Google Scholar
  28. 25.
    W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140: A1133 (1965).Google Scholar
  29. 26.
    J. C. Slater, Statistical exchange-correlation in the self-consistent field, Advan. Quantum Chem. 6: 1 (1972).Google Scholar
  30. 27.
    S. Hara, The scattering of slow electrons by hydrogen molecules, J. Phys. Soc. Japan 22: 710 (1967).Google Scholar
  31. 28.
    M. E. Riley and D. G. Truhlar, Approximations for the exchange potential in electron scattering, J. Chem. Phys. 63: 2182 (1975).Google Scholar
  32. 29.
    M. H. Mittleman and K. M. Watson, Effect of the Pauli principle on the scattering of high-energy electrons by atoms, Ann. Phys. (NY) 10: 268 (1960).Google Scholar
  33. 30.
    M. E. Riley and D. G. Truhlar, Effects of the Pauli principle on electron scattering by open-shell targets, J. Chem. Phys. 65: 792 (1976).Google Scholar
  34. 31.
    P. Baille and J. W. Darewych, A note on local exchange approximations in electronic collisions, J. Chem. Phys. 67: 3399 (1977).Google Scholar
  35. 32.
    J. B. Furness and I. E. McCarthy, Semiphenomenological optical model for electron scattering in atoms, J. Phys. B 6: 2280 (1973).Google Scholar
  36. 33.
    R. Vanderpoorten, A local optical potential study of elastic electron-atom scattering, J. Phys. B 8: 926 (1975).Google Scholar
  37. 34.
    R. A. Bonham, Inelastic scattering from atoms at medium energies. I. Bound states, J. Chem. Phys. 36: 3260 (1962).Google Scholar
  38. 35.
    V. I. Ochkur, Zh. Eksperim. i Theor. Fiz. 45:734 (1963) [English transi.: The Born-Oppenheimer method in the theory of atomic collisions, Soviet Phys. J.E.T.P. 18:503 (1964)].Google Scholar
  39. 36.
    W. M. Duxler, R. T. Poe and R. W. LaBahn, Study of the polarized-orbital method and its application to the scattering of electrons by helium, Phys. Rev. A 4: 1935 (1971).Google Scholar
  40. 37.
    M. S. Pindzola and H. P. Kelly, Low-energy elastic scattering of electrons by neutral argon atom, Phys. Rev. A 9: 323 (1974).Google Scholar
  41. 38.
    B. H. Bransden, M. R. C. McDowell, C. J. Noble and T. Scott, Equivalent exchange potentials in electron scattering, J. Phys. B 9: 1301 (1976).Google Scholar
  42. 39.
    D. G. Truhlar and N. A. Mullaney, Semiclassical exchange approximation for inelastic electron scattering, J. Chem. Phys. 68: 1574 (1978).Google Scholar
  43. 40.
    B. H. Bransden, M. Crocker, I. E. McCarthy, M. R. C. McDowell and L. A. Morgan, Effective exchange potentials for inelastic scattering, J. Phys. B 11: 3411 (1978);Google Scholar
  44. L. A. Morgan and M. R. C. McDowell, Equivalent exchange potentials, J. Phys. B 12: L739 (1979).Google Scholar
  45. 41.
    K. Omidvar, Electron impact 2s and 2p excitations of atomic hydrogen, NASA Goodard Space Flight Center, technical note G-419, 1963 (unpublished).Google Scholar
  46. 42.
    R. J. W. Henry and N. F. Lane, Polarization and exchange effects in low-energy electron-H2 scattering, Phys. Rev. 183: 221 (1969).Google Scholar
  47. 43.
    B. I. Schneider, R-matrix theory for electron-molecule collisions using analytic basis set expansions. II. Electron-H2 scattering in the static-exchange model, Phys. Rev. A 11: 1957 (1975).Google Scholar
  48. 44.
    L. A. Collins, W. D. Robb and M. A. Morrison, Electron scattering by diatomic molecules: Iterative static-exchange techniques, Phys. Rev. A 21: 488 (1980).Google Scholar
  49. 45.
    D. G. Truhlar and M. A. Brandt, Close-coupling calculations of differential cross sections for elastic scattering and rotational excitation of hydrogen molecules by electrons at 10 eV and 40 eV, J. Chem. Phys. 65: 3092 (1976).Google Scholar
  50. 46.
    P. Baille and J. W. Darewych, Comparison of local exchange potentials for electron scattering by hydrogen molecules, J. Phys. B 10: L615 (1977).Google Scholar
  51. 47.
    K. Onda and D. G. Truhlar, Comparison of local-exchange approximations for intermediate-energy electron-molecule differential cross sections, J. Chem. Phys. 72: 1415 (1980).Google Scholar
  52. 48.
    K. Onda and D. G. Truhlar, State-to-state cross sections for elastic and inelastic electron scattering by N2 at 20–35 eV, including resonant enhancement of vibrational excitation, J. Chem. Phys. 72: 5249 (1980).Google Scholar
  53. 49.
    A. W. Yau, R. P. McEachran and A. D. Stauffer, Electron scattering from noble gases, J. Phys. B 11: 1 (1978).Google Scholar
  54. 50.
    M. A. Morrison and L. A. Collins, Exchange in low-energy electron-molecule scattering: Orthogonalization and freeelectron-gas approximations for collisions with polar and non-polar molecules, Phys. Rev. A, to be published.Google Scholar
  55. 51.
    D. G. Truhlar and J. Abdallah, Jr., New methods for calculating scattering cross sections for rearrangement collisions, Phys. Rev. A 9: 297 (1974);Google Scholar
  56. S. P. Rountree and G. Parnell, Modified variational method for scattering, Phys. Rev. Lett. 39: 853 (1977);Google Scholar
  57. L. A. Collins and W. D. Robb, A multichannel modified variational approach to low-energy electron-molecule collisions: Static-exchange approximation, J. Phys. B 13: 1637 (1980).Google Scholar
  58. 52.
    H. Feshbach, Unified theory of nuclear reactions, Ann. Phys. (NY) 5: 357 (1958);Google Scholar
  59. H. Feshbach, A unified theory of nuclear reactions. II, Ann. Phys. (NY) 19: 287 (1962).Google Scholar
  60. 53.
    A. L. Fetter and K. M. Watson, The optical model, Advan. Theor. Phys. 1: 115 (1965);Google Scholar
  61. M. H. Mittleman, Elastic scattering of electrons by atoms, Advan. Theor. Phys. 1: 283 (1965).Google Scholar
  62. 54.
    C. J. Joachain, “Quantum Collision Theory,” North-Holland, Amsterdam (1975), chapter 20.Google Scholar
  63. 55.
    B. H. Bransden and M. R. C. McDowell, Electron scattering by atoms at intermediate energies. I. Theoretical models, Phys. Rep. 30: 207 (1977);Google Scholar
  64. B. H. Bransden and M. R. McDowell, Electron scattering by atoms at intermediate energies. II. Theoretical and experimental data for light atoms, Phys. Rep. 31: 3095 (1978).Google Scholar
  65. 56.
    C. J. Joachain, Optical model theory of elastic electron-and positron-atom scattering at intermediate energies, Comments Atomic Molec. Phys. 6: 37 (1977);Google Scholar
  66. F. W. Byron, Jr. and C. J. Joachain, Elastic scattering of electrons and positrons by complex atoms at intermediate energy, Phys. Rev. A 15: 128 (1977);Google Scholar
  67. C. J. Joachian, R. Vanderpoorten, K. H. Winters and F. W. Byron, Jr., Optical model theory of elastic electron-and positron-argon scattering at intermediate energies, J. Phys. B 10: 227 (1977);Google Scholar
  68. R. Vanderpoorten, A local optical potential study of elastic e-Li scattering, J. Phys. B 9: L535 (1976);Google Scholar
  69. C. J. Joachain and K. H. Winters, An optical model approach to the elastic scattering of electrons by H(2s), J. Phys. B 13: 1451 (1980).Google Scholar
  70. 57.
    I. E. McCarthy, C. J. Noble, B. A. Phillips and A. D. Turnbull, Optical model for electron scattering by inert gases, Phys. Rev. A 15: 2173 (1977).Google Scholar
  71. 58.
    P. J. O. Teubner, S. J. Buckman and C. J. Noble, Differential cross sections for the elastic scattering of intermediate-energy electrons from sodium, J. Phys. B 11: 2345 (1978).Google Scholar
  72. 59.
    D. H. Madison, Sensitivity of differential cross sections and angular correlation parameters to scattering parameters, J. Phys. B 12: 3399 (1979);Google Scholar
  73. D. H. Madison, Effect of optical potentials on angular correlation parameters, in: “Coherence and Correlation in Atomic Collisions,” H. Kleinpoppen and J. F. Williams, ed., Plenum, New York (1980), p. 167;Google Scholar
  74. M. Stewart and D. H. Madison, Effect of polarization and absorption on differential cross sections and angular correlation parameters, to be published.Google Scholar
  75. 60.
    M. S. Pindzola and H. P. Kelly, Electron excitation of the 2s and 2p states of hydrogen from threshold to 50 eV, Phys. Rev. A 11: 221 (1975).Google Scholar
  76. 61.
    P. W. Coulter and W. R. Garrett, Electron-hydrogen atom scattering by complex-optical-potential methods, Phys. Rev. A 18: 1902 (1978);Google Scholar
  77. P. W. Coulter, Calculation of inelastic cross sections from microscopic-optical-model potentials, Phys. Rev. A 18: 1908 (1978).Google Scholar
  78. 62.
    T. Scott and H. S. Taylor, Elastic electron-helium scattering. I. A theoretical approach, J. Phys. B 12, 3367 (1979);Google Scholar
  79. T. Scott and H. S. Taylor, Elastic electron-helium scattering. II. Application to many-body theory, J. Phys. B 12: 3385 (1979);Google Scholar
  80. B. Schneider, H. S. Taylor and R. Paris, Many-body theory of the elastic scattering of electrons from atoms and molecules, Phys. Rev. A 1: 855 (1970).Google Scholar
  81. 63.
    D. G. Truhlar and K. Onda, Matrix effective potential for electronic response in electron scattering with application to He at 30–400 eV impact energy, Phys. Lett. 76A: 119 (1980).Google Scholar
  82. 64.
    K. Onda and D. G. Truhlar, New approaches to the quantum mechanical treatment of charge polarization in intermediate-energy electron scattering, Phys. Rev. A 22: 86 (1980).Google Scholar
  83. 65.
    D. G. Truhlar, D. A. Dixon, R. A. Eades, F. A. Van-Catledge and K. Onda, Polarization potentials for electron scattering, in: “Electron-Molecule and Photon-Molecule Collisions”, T. N. Resigno, V. McKoy and B. I. Schneider, eds., Plenum, New York (1979), p. 161.Google Scholar
  84. 66.
    D. G. Truhlar, D. A. Dixon and R. A. Fades, Ab initio SCF polarizabilities and electron-molecule adiabatic polarization potentials. I. H2, J. Phys. B 12: 1913 (1979).Google Scholar
  85. 67.
    D. A. Dixon, R. A. Eades and D. G. Truhlar, Ab initio SCF polarizabilities and electron-molecule adiabatic polarization potentials. II. Lie. J. Phys. B 12: 2741 (1979).Google Scholar
  86. 68.
    R. A. Eades, D. G. Truhlar and D. A. Dixon, Ab initio SCF polarizabilities and electron-molecule adiabatic polarization potentials. III. N2. Phys. Rev. A 20: 867 (1979).Google Scholar
  87. 69.
    D. G. Truhlar, K. Onda, R. A. Eades and D. A. Dixon, Effective potential approach to electron-molecule scattering theory, Int. J. Quantum Chem. Symp. 13: 601 (1979).Google Scholar
  88. 70.
    C. H. Douglas, Jr., D. A. Weil, P. A. Charlier, R. A. Eades, D. G. Truhlar and D. A. Dixon, following chapter in the present volume.Google Scholar
  89. 71.
    M. H. Mittleman and K. M. Watson, Scattering of charged particles by neutral atoms, Phys. Rev. 113: 198 (1959);Google Scholar
  90. M. H. Mittleman, Scattering of electrons by atomic hydrogen. Ann. Phys. (NY) 14: 94 (1961).Google Scholar
  91. 72.
    C. J. Kleinman, Y. Hahn and L. Spruch, Dominant nonadiabatic contribution to the long-range electron-atom interaction, Phys. Rev. 165: 53 (1968).Google Scholar
  92. 73.
    R. J. Drachman and A. Temkin, Polarized orbital approximations, in: “Case Studies in Atomic Collision Physics II”, E. W. McDaniel and M. R. C. McDowell, eds., North-Holland, Amsterdam (1972), p. 399.Google Scholar
  93. 74.
    N. F. Lane and R. J. W. Henry, Polarization potential in low-energy electron-H2 scattering, Phys. Rev. 173: 183 (1978).Google Scholar
  94. 75.
    S. Hara, The dipole-polarization potential in H2-electron scattering, J. Phys. Soc. Japan 27: 1262 (1969).Google Scholar
  95. 76.
    D. G. Truhlar and F. A. Van-Catledge, Adiabatic polarization potentials for electron scattering by N2 and CO, J. Chem. Phys. 69: 3575 (1978).Google Scholar
  96. 77.
    K. Onda and D. G. Truhlar, SCF treatment of charge polarization effects in intermediate-energy electron scattering calculations with applications to N2, J. Chem. Phys. 70: 1681 (1979).Google Scholar
  97. 78.
    K. Onda and D. G. Truhlar, Model potentials for electron scattering: Converged close coupling calculations for the differential cross section for e N2 at 30–50 eV, J. Chem. Phys. 69: 1361 (1978).Google Scholar
  98. 79.
    S. K. Srivastava, A. Chutjian and S. Trajmar, Absolute elastic differential electron scattering cross sections in the intermediate energy region. II. N2, J. Chem. Phys. 64: 1340 (1976).Google Scholar
  99. 80.
    T. W. Shyn and G. R. Carignan, Angular distribution of electrons elastically scattered from gases: 1.5 eV-400 eV on N2. II, Phys. Rev. A 22: 923 (1980).Google Scholar
  100. 81.
    K. Onda and D. G. Truhlar, State-to-state cross sections for electron impact on N2. Close coupling and polarized Born calculations for rotational and vibrational excitation and pure elastic scattering at nonresonant energies, J. Chem. Phys. 71: 5107 (1979).Google Scholar
  101. 82.
    K. Onda and D. G. Truhlar, Quantum mechanical study of elastic scattering and rotational excitation of CO by electrons, J. Chem. Phys. 73: 2688 (1980).Google Scholar
  102. 83.
    D. Thirumalai, K. Onda and D. G. Truhlar, Elastic scattering and rotational excitation of a polyatomic molecule by electron impact: Acetylene, J. Chem. Phys. 74, in press.Google Scholar
  103. 84.
    D. Thirumalai, K. Onda and D. G. Truhlar, Excitation of the asymmetric stretch made of CO2 by electron impact, J. Phys. B 13: L619 (1980);Google Scholar
  104. D. Thirumalai, K. Onda and D. G. Truhlar, unpublished.Google Scholar
  105. 85.
    D. R. Bates and H. S. W. Massey, The negative ions of atomic and molecular oxygen, Phil. Trans. Soc. Lond. A 239: 269 (1943).Google Scholar
  106. 86.
    V. M. Martin, M. J. Seaton and J. B. G. Wallace, On the use of the adiabatic theory in electron-atom collision calculations, Proc. Roy. Soc. 72: 701 (1958);Google Scholar
  107. L. Castillejo, I. C. Percival and M. J. Seaton, On the theory of elastic collisions between electrons and hydrogen atoms, Proc. Roy. Soc. Lond., Ser. A 254: 259 (1960).Google Scholar
  108. 87.
    P. G. Burke, Theory of low-energy electron-molecule collisions, Advan. At. Molec. Phys. 15: 471 (1979).Google Scholar
  109. 88.
    E. L. Brieg and C. C. Lin, Vibrational excitation of diatomic molecules by electron impact, J. Chem. Phys. 43: 3839 (1965);Google Scholar
  110. R. J. W. Henry, Low-energy electron-diatomic molecule scattering, Int. J. Quantum Chem. Symp. 13: 633 (1979).Google Scholar
  111. 89.
    D. G. Truhlar and J. K. Rice, Electron-scattering by H2 with and without vibrational excitation. I. Quantum mechanical theory, J. Chem. Phys. 52:4480 (1970), 55: 2005 (E) (1971);Google Scholar
  112. D. G. Truhlar, J. K. Rice, S. Trajmar and D. C. Cartwright, The importance of polarization for electron scattering in the intermediate-energy region, Chem. Phys. Lett. 9: 299 (1971).Google Scholar
  113. 90.
    K. Onda, Electronic polarization of atoms by charged-particle impact, Institute for Space and Aeronautical Science Report No. 471, University of Tokyo, 1971 (unpublished).Google Scholar
  114. 91.
    K. S. Pitzer, “Quantum Chemistry”, Prentice-Hall, Englewood Cliffs, NJ (1953), appendix 20.Google Scholar
  115. 92.
    M. J. Seaton and L. Steenman-Clark, Effective potentials for electron-atom scattering below inelastic thresholds, I. Asymptotic forms, J. Phys. B 10: 2639 (1977).Google Scholar
  116. 93.
    R. J. Drachman, Asymptotic effective potentials for electron-hydrogen scattering, J. Phys. B 12: L699 (1979).Google Scholar
  117. 94.
    R. K. Nesbet,,Variational calculations of accurate e-He cross sections below 19 eV, Phys. Rev. A 20: 58 (1979).Google Scholar
  118. 95.
    D. Andrick and H. Bitsch, Experimental investigation and phase shift analysis of low-energy electron-helium scattering, J. Phys. B 8: 393 (1975);Google Scholar
  119. J. F. Williams, A phase shift analysis of experimental angular distributions of electrons elastically scattered from He, Ne and Ar over the range 0.5 to 20 eV, J. Phys. B 12: 265 (1979).Google Scholar
  120. 96.
    D. F. Register, S. Trajmar and S. K. Srivastava, Absolute elastic differential electron scattering cross sections for He: A proposed calibration standard from 5 to 200 eV, Phys. Rev. A 21: 1134 (1980).Google Scholar
  121. 97.
    P. G. Burke and K. Smith, The low-energy scattering of electrons and positrons by hydrogen atoms, Rev. Mod. Phys. 34: 458 (1962).Google Scholar
  122. 98.
    G. F. Drukarev, “The Theory of Electron-Atom Collisions”, Academic Press, London (1965).Google Scholar
  123. 99.
    P. G. Burke, Low-energy electron-atom scattering, in: “Atomic Collision Processes”, S. Geltman, K. T. Mahanthappa and W. E. Brittin, eds., Gordon and Breach, New York (1969), p. 1.Google Scholar
  124. 100.
    K. Smith, “The Calculation of Atomic Collision Processes”, Wiley-Interscience, New York (1971).Google Scholar
  125. 101.
    S. Geltman, Applications of pseudo-state expansions, Phys. Electron. At. Collisions, Invited Pap. Prog. Rep. Int. Conf. 7th, 216 (1971).Google Scholar
  126. 102.
    D. G. Truhlar, J. Abdallah, Jr. and R. L. Smith, Algebraic variational methods in scattering theory, Advan. Chem. Phys. 25: 211 (1974).Google Scholar
  127. 103.
    R. K. Nesbet, Low-energy electron scattering by complex atoms: Theory and calculations, Advan. At. Mol. Phys. 13: 315 (1977).Google Scholar
  128. 104.
    S. Yoshida, The inelastic scattering of nucleons by the surface interaction, Proc. Phys. Soc. Lond. 69: 668 (1956).Google Scholar
  129. 105.
    M. H. Mittleman and R. Pu, Optical potential for closely coupled states, Phys. Rev. 126: 370 (1962).Google Scholar
  130. 106.
    H. C. Volkin, Generalized potentials for inelastic scattering, Phys. Rev. 155: 1177 (1967).Google Scholar
  131. 107.
    G. Wolkin, Computational approach to the construction of the optical potential, J. Chem. Phys. 56: 2591 (1972).Google Scholar
  132. 108.
    I. E. McCarthy and M. R. C. McDowell, Total cross sections in the atomic coupled-channels optical model, J. Phys. B 12: 3775 (1979).Google Scholar
  133. 109.
    F. J. deHeer and R. J. H. Jansen, Total cross sections for electron scattering by He, J. Phys. B 10: 3741 (1977).Google Scholar
  134. 110.
    B. I. Schneider, Pseudostates and low-energy electron-molecule collisions: Application to H2 and N2, Chem. Phys. Lett. 51: 578 (1977).Google Scholar
  135. 111.
    A. Klonover and U. Kaldor, Ab initio calculations of electron-molecule scattering cross sections including polarization, Chem. Phys. Lett. 51: 321 (1977);Google Scholar
  136. A. Klonover and U. Kaldor, Ab initio electron-molecule scattering theory including polarization: Elastic scattering and rotational excitation of H2, J. Phys. B 11: 1623 (1978);Google Scholar
  137. A. Klonover and U. Kaldor, Ab initio electron-molecule scattering theory including polarization: Vibrational and vibrational-rotational excitation of H2, J. Phys. B 12: 323 (1979).Google Scholar
  138. 112.
    D. G. Truhlar, S. Trajmar and W. Williams, Electron scattering by molecules with and without vibrational excitation. IV. Elastic scattering and excitation of the first vibrational level of N2 and CO at 20 eV, J. Chem. Phys. 57: 3250 (1972).Google Scholar
  139. 113.
    M. A. Brandt and D. G. Truhlar, Importance of long-range forces and short-range forces in electron scattering: Elastic scattering by N2 at 10 and 30 eV, Chem. Phys. Lett. 23: 48 (1973).Google Scholar
  140. 114.
    S. Trajmar, D. G. Truhlar and J. K. Rice, Electron scattering by H2 with and without vibrational excitation. II. Experimental and theoretical study of elastic scattering. J. Chem. Phys. 52:4502 (1970), 55: 2004 (E) (1971).Google Scholar
  141. 115.
    S. Trajmar, D. G. Truhlar, J. K. Rice and A. Kuppermann, Electron scattering by H2 with and without vibrational excitation. III. Experimental and theoretical study of inelastic scattering, J. Chem. Phys. 52: 4516 (1970).Google Scholar
  142. 116.
    D. G. Truhlar, Electron scattering with and without vibrational excitation. VIII. Comment on a theory of small-energytransfer collisions dominated by long-range forces, Phys. Rev. A 7: 2217 (1973).Google Scholar
  143. 117.
    D. G. Truhlar and J. K. Rice, Elastic scattering of electrons by hydrogen molecules at intermediate energies, Phys. Lett. A 47: 372 (1974).Google Scholar
  144. 118.
    N. F. Lane and R. J. W. Henry, Polarization potential in low-energy electron-H2 scattering, Phys. Rev. 173: 183 (1968).Google Scholar
  145. 119.
    M. K. Srivastava, A. N. Tripathi and M. Lal, Exchange effects in the independent-atom model of electron-molecule scattering, Phys. Rev. A 18: 2377 (1978).Google Scholar
  146. 120.
    J. L. Dehmer and D. Dill, The continuum multiple-scattering approach to electron-molecule scattering and molecular photo-ionization, in: “Electron-Molecule and Photon-Molecule Collisions,” T. N. Rescigno, V. McKoy and B. I. Schneider, eds., Plenum, New York (1979), p. 225.Google Scholar
  147. 121.
    A. M. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. Roy. Soc. Lond., Ser. A 256: 540 (1960).Google Scholar
  148. 122.
    F. Linder and H. Schmidt, Rotational and vibrational excitation of H2 by slow electron impact, Z. Naturforsch, Teil A 26: 1603 (1969).Google Scholar
  149. 123.
    S. K. Srivastava, R. I. Hall, S. Trajmar and A. Chutjian, Pure rotational excitation of H2 at electron impact energies of 3 to 100 eV, Phys. Rev. A 12: 1399 (1975).Google Scholar
  150. 124.
    M. A. Brandt, D. G. Truhlar and F. A. Van-Catledge, Electron scattering by nitrogen molecules in the energy range 30–75 eV: Theory and application to elastic scattering, J. Chem. Phys. 64: 4957 (1976).Google Scholar
  151. 125.
    D. G. Truhlar, M. A. Brandt, S. K. Srivastava, S. Trajmar and A. Chutjian, Quantum mechanical and crossed-beam study of vibrational excitation of N2 by electron impact at 30–75 eV, J. Chem. Phys. 66: 655 (1977).Google Scholar
  152. 126.
    D. G. Truhlar, M. A. Brandt, A. Chutjian, S. K. Srivastava and S. Trajmar, Electron scattering by N2 at 5 and 10 eV: Rotational-vibrational close coupling calculations and crossed-beam studies of vibrational excitation, J. Chem. Phys. 65: 2962 (1976).Google Scholar
  153. 127.
    J. R. Rumble, Jr. and D. G. Truhlar, Investigation of the assumptions of the multiple-scattering method for electron-molecule scattering cross sections, J. Chem. Phys. 72: 3206 (1930).Google Scholar
  154. 128.
    J. R. Rumble, Jr., D. G. Truhlar and M. A. Morrison, unpublished calculations of vibrational excitation cross sections for N2.Google Scholar
  155. 129.
    N. Chandra and A. Temkin, Hybrid theory calculation of electron-N2 scattering at 5 and 10 eV, J. Chem. Phys. 65: 4537 (1976).Google Scholar
  156. 130.
    Z. Pavlovic, M. J. W. Boness, A. Herzenberg and G. J. Schulz, Vibrational excitation in N2 by electron impact in the 15–35 eV region, Phys. Rev. A 6: 676 (1972).Google Scholar
  157. 131.
    J. L. Dehmer, J. Siegel, J. Welch and D. Dill, Origin of enhanced vibrational excitation in N2 by electron impact in the 15–35 eV region, Phys. Rev. A 21: 101 (1980).Google Scholar
  158. 132.
    H. Tanaka, S. K. Srivastava and A. Chutjian, Absolute elastic differential electron scattering cross sections in the intermediate energy region. IV. CO, J. Chem. Phys. 69: 5329 (1978).Google Scholar
  159. 133.
    S. K. Srivastava, A. Chutjian and S. Trajmar, Absolute elastic differential electron scattering cross sections in the intermediate energy region. II. N2, J. Chem. Phys. 64: 1340 (1976).Google Scholar
  160. 134.
    W. R. Newell, D. F. C. Brewer and A. C. H. Smith, Elastic differential electron scattering from the polyatomic molecules CH4, C2H2 and C2H4, Abstr. Pap. Int. Conf. Phys. Electron. At. Collisions 11th, 308 (1979).Google Scholar
  161. 135.
    D. F. Register, H. Nishimura and S. Trajmar, Elastic scattering and vibrational excitation of CO2 by 4, 10, 20 and 50 eV electrons, J. Phys. B 13: 1651 (1980).Google Scholar
  162. 136.
    D. G. Truhlar, W. Williams and S. Trajmar, Electron scattering by molecules with and without vibrational excitation. VI. Elastic scattering by CO at 6–80 eV, J. Chem. Phys. 57: 4307 (1972).Google Scholar
  163. 137.
    M. A. Morrison, N. F. Lane and L. A. Collins, Low-energy electron-molecule scattering: Application of coupled-channel theory to e-0O2 collisions, Phys. Rev. A 15: 2186 (1977).Google Scholar
  164. 138.
    T. W. Shyn, W. E. Sharp and G. R. Carignan, Angular distribution of electrons elastically scattered by CO2, Phys. Rev. A 17: 1855 (1978).Google Scholar
  165. 139.
    T. N. Rescigno, C. W. McCurdy, Jr., V. McKoy and C. F. Bender, Low-energy electron-impact excitation of the hydrogen molecule, Phys. Rev. A 13: 216 (1976);Google Scholar
  166. A. W. Fliflet and V. McKoy, Distorted-wave-approximation cross sections for excitation of the b3Eú and BIEu states of H2 by low-energy electronic impact, Phys. Rev. A 21: 1863 (1980).Google Scholar
  167. 140.
    A. W. Fliflet, V. IicKoy and T. Rescigno, Cross sections for excitation of the B311g, C3IIu and 02+ states of N2 by low-energy electron impact in the distorted-wave approximation, J. Phys. B 12: 3281 (1979).Google Scholar
  168. 141.
    A. W. Fliflet, V. McKoy and T. N. Rescigno, Dissociation of F2 by electron impact of the lowest 3IIu electronic state, Phys. Rev. A 21: 788 (1980).Google Scholar
  169. 142.
    K. F. Black and N. F. Lane, Simultaneous electronic and rotational excitation of H2 by electron impact, Abstr. Pap. Int. Conf. Phys. Electron. At. Collisions 6th, 107 (1969)Google Scholar
  170. F. Black and N. F. Lane, Resonant excitation of the B’Eu state of H2 by electron impact, Abstr. Pap. Int. Conf. Phys. Electron. At. Collisions 7th, 332 (1971).Google Scholar
  171. 143.
    S. Chung and C. C. Lin, Application of the close-coupling method to excitation of electronic states and dissociation of H2 by electron impact, Phys. Rev. A 17: 1874 (1978).Google Scholar
  172. 144.
    P. G. Burke and W. D. Robb, The R-matrix theory of atomic processes, Advan. At. Molec. Phys. 11:143 (1975); B. D. Buckley, P. G. Burke and Vo Ky Lan, R-matrix calculations for electron-molecule scattering, Comput. Phys. Commun. 17: 175 (1979).Google Scholar
  173. 145.
    J. Abdallah, Jr. and D. G. Truhlar, The use of contracted basis functions in algebraic variational scattering calculations, J. Chem. Phys. 61: 30 (1974).Google Scholar
  174. 146.
    J. Callaway, The variational method in atomic scattering, Phys. Rep. 45: 89 (1978).Google Scholar
  175. 147.
    M. A. Abdel-Raouf, Tests of the least norm variational principle with upper and lower bounds on s-wave phaseshifts, J. Phys. B 12: 3349 (1979).Google Scholar
  176. 148.
    D. K. Watson and V. McKoy, Discrete-basis-function approach to electron-molecule scattering, Phys. Rev. A 20: 1474 (1979);Google Scholar
  177. R. R. Lucchese and’ V. McKoy, Application of the Schwinger variational principle to electron-ion scattering in the static-exchange approximation, Phys. Rev. A 21: 112 (1980);Google Scholar
  178. D. K. Watson, R. R. Lucchese, V. McKoy and T. N. Rescigno, Schwinger variational principle for electron-molecule scattering: Application to electron-hydrogen scattering, Phys. Rev. A 21: 738 (1980);Google Scholar
  179. D. Thírumalai and D. G. Truhlar, Comparison of convergence of the Schwinger, optimized anomaly-free, and optimized minimum norm variational methods for potential scattering, Chem. Phys. Lett. 70:330 (1980) and erratum in press;Google Scholar
  180. J. Callaway, Comparison of Schwinger and Kohn variational phase shift calculations, Phys. Lett. 77A: 137 (1980);Google Scholar
  181. N. Maleki and J. Macek, Schwinger’s variational principle for electron-ion scattering, Phys. Rev. A 21: 1403 (1980);Google Scholar
  182. K. Takatsuka and V. McKoy, The Schwinger variational principle for multichannel scattering, Phys. Rev. Lett. 45: 1396 (1980);Google Scholar
  183. K. Takatsuka and V. McKoy, A variational scattering theory using a functional of fractional form. II. An L2 approach, to be published.Google Scholar
  184. 149.
    M. R. H. Rudge, A variational procedure for multichannel scattering, J. Phys. B, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Donald G. Truhlar
    • 1
  1. 1.Department of Chemistry and Chemical Physics ProgramUniversity of MinnesotaMinneapolisUSA

Personalised recommendations