Skip to main content

Electrostatic Potential of Free Molecules Derived from Electron Diffraction Results

  • Chapter
Chemical Applications of Atomic and Molecular Electrostatic Potentials

Abstract

With the extension of the wave theory to electrons, studies of structures at atomic and molecular dimensions became possible. Not only have electron microscopes proven to be powerful tools in biology and medicine, but individual heavy atoms can be followed in their thermal motion on a single crystal surface,1 and the arrangement of atoms in crystals can be photographed directly.2,3 The wave nature of electrons has been established many different times, but Moellenstedt et al. gave the most direct demonstration in their biprism interference experiment.4 All these experiments have one thing in common: they utilize high-energy electrons (greater than 30 keV), as at this energy the de Broglie wavelength is smaller than the atomic dimensions to be studied. In spite of the theoretically high resolving power of an electron microscope, the structure of a free molecule cannot be projected on the observation screen. This failure is due to the aberrations with which all optical devices are universally afflicted.5 Hence the most precise information on the nature of the charge distribution in molecules is of the indirect type obtainable by means of diffraction experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. V. Crewe, J. Wahl and J. P. Langmore, Visibility of single atoms, Science 168: 1338 (1970).

    Article  CAS  Google Scholar 

  2. L. Licht and F. Moellenstedt, personal communications.

    Google Scholar 

  3. J. M. Cowley and S. Iijima, Electron microscopy of atoms in crystals, Physics Today 30 (3): 32 (1977).

    Article  CAS  Google Scholar 

  4. G. Mollenstedt and H. Dueker, Besbachtungen und messungen an biprisma-interferenzen mit elektronen wellen, Zeit. f. Physik 145: 377 (1956).

    Article  Google Scholar 

  5. W. Glaser, “Grundlagen Der Elektronenoptik,” Van NostrandReinhold, New York (1974).

    Google Scholar 

  6. R. A. Bonham and M. Fink, “High Energy Electron Scattering,” Van Nostrand-Reinhold, New York (1974).

    Google Scholar 

  7. R. A. Bonham, J. S. Lee, R. Kennerly and W. St. John, Experimental measurements of charge and momentum densities,generalized oscillator strengths and excitation frequencies, Adv. Quantum Chem. 11: 1 (1978).

    Article  CAS  Google Scholar 

  8. R. A. Bonham and M. Fink, Determination of charge densities and related quantities by use of high energy electron scattering, in: “Electron and Magnetization Densities in Molecules and Crystals,” NATO Advanced Study Institutes, Series B, Vol. 48, Plenum Press, New York (1980), p. 60.

    Google Scholar 

  9. See chapter 1 in reference 6. See also M. L. Davis, “Electron Diffraction in Gases,” Marcel Dekker, New York (1971).

    Google Scholar 

  10. K. Kuchitsu and L. S. Bartell, Effects of anharmonicity of molecular vibrations on the diffraction of electrons. II. Interpretation of experimental structural parameters, J. Chem. Phys. 35: 1945 (1961).

    Article  CAS  Google Scholar 

  11. Cf. M. Fink, P. G. Moore and D. Gregory, Precise determination of differential electron scattering cross sections. I, J. Chem. Phys. 71: 5227 (1979).

    Article  CAS  Google Scholar 

  12. S. Konaka, Small angle electron diffraction by gases. Apparatus with electron counting device, Jap. J. Phys. 11:1199 (1972); S. Shibata, F. Hirota, N. Nakuta and T. Muramatsu, Electron distribution in water by high-energy electron scattering, Int. J. Quantum Chem. 18: 281 (1980).

    Google Scholar 

  13. A. L. Bennani, A. Duguet and H. F. Wellenstein, Differential cross sections for 35 keV electrons elastically scattered from NH3, J. Phys. B 12: 461 (1979).

    Article  Google Scholar 

  14. L. S. Bartell, The investigation of electron distribution in atoms by electron diffraction, Phys. Rev. 90: 833 (1953).

    Article  CAS  Google Scholar 

  15. C. Tavard, M. Rouault and M. Roux, Diffraction of X-ray and electrons by molecules. III. A method for the determination of molecular electron densities, J. Chim. Phys. 62:1410 (1965), and earlier works.

    Google Scholar 

  16. E. Clementi, Ab initio computations in atoms and molecules, IBM J. Res. Develop. 9: 2 (1965).

    Google Scholar 

  17. R. K. Nesbet, Atomic Bethe Goldstone Equation IV. Valence shell correlation energies of ground states of Na, Mg, Al, Si, P, S, Cl and Ar, Phys. Rev. A3:87 (1971), and previous works.

    Google Scholar 

  18. D. A. Kohl and L. S. Bartell, Electron densities from gas phase electron diffraction intensities. I. Preliminary considerations, J. Chem. Phys. 51: 2891 (1969).

    Article  CAS  Google Scholar 

  19. D. A. Kohl and L. S. Bartell, Electron densities from gas phase electron diffraction intensities. II. Molecular HartreeFock cross sections, J. Chem. Phys. 51: 2896 (1969).

    Article  CAS  Google Scholar 

  20. J. Epstein, J. Bentley and R. F. Stewart, On the use of generalized X-ray scattering factors for analysis of charge density from gas phase electron diffraction intensities, J. Chem. Phys. 66: 5564 (1977).

    Article  CAS  Google Scholar 

  21. P. E. Cade and A. C. Wahl, Hartree-Fock-Roothaan wave functions for diatomic molecules, Atomic Data and Nuclear Data Tables 13: 339 (1974).

    Article  CAS  Google Scholar 

  22. H. L. Cox, Jr. and R. A. Bonham, Elastic electron scattering amplitudes for neutral atoms calculated using the partial wave method at 10, 40, 70 and 100 keV for Z = 1 to Z = 54, J. Chem. Phys. 47: 2599 (1967).

    Article  CAS  Google Scholar 

  23. D. M. Brink and C. R. Satchler, “Angular Momentum,” Oxford University Press, London (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fink, M., Bonham, R.A. (1981). Electrostatic Potential of Free Molecules Derived from Electron Diffraction Results. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics