The Bare-Nuclear Potential as Harbinger for the Electron Density in a Molecule

  • Robert G. Parr
  • Alexander Berk

Abstract

This work has the purpose of exploring the primitive hypothesis that electron densities in molecules have contours more or less parallel to contours of bare-nuclear potentials (BP). Otherwise put, the question addressed is, to what extent is the electron density in a molecule, the scalar quantity ρ(\(\vec r\) ), a function of the composite scalar potential, v(\(\vec r\) ), which is the sum of the coulomb potentials due to the nuclei,
$$v(\vec r) = \sum\nolimits_\alpha {{Z_\alpha }} /{r_\alpha }$$
(1)
Here \(\vec r\) is the position of an electron with respect to some origin, rα its distance from nucleus α. Only ground states are considered.

Keywords

Internuclear Distance Lithium Hydride Molecular Charge Distribution Electron Density Contour Local Density Functional Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys.Rev. B136:864 (1964). For a review of typical application to molecules, see R. C. Parr, Density functional theory of atoms and molecules, pp. 5–15, in: “Horizons of Quantum Chemistry,” K. Fukui and B. Pullman, eds., D. Reidel Publishing Company (1980).Google Scholar
  2. 2.
    R. G. Parr, S. R. Gadre and L. J. Bartolotti, Local density functional theory of atoms and molecules, Proc. Natl. Acad. Sci. 76: 2522 (1979).CrossRefGoogle Scholar
  3. 3.
    Y. Tal, R. F. W. Bader and J. Erkku, Structural homeomorphism between the electronic charge density and the nuclear potential of a molecular system, Phys. Rev. A21: 1 (1980).CrossRefGoogle Scholar
  4. 4.
    D. R. Bates, K. Ledsham and A. L. Stewart, Wave functions of the hydrogen molecular ion, Phil. Trans. Roy. Soc. A246:215 (1953); for the normalization constants, see E. M. Roberts, M. R. Foster and F. F. Selig, On the theory of spin-orbit and hyperfine interactions in molecules. Application to the hydrogen molecule-ion, J. Chem. Phys. 37:485 (1962). For extremely accurate ground state energy values, see H. Wind, Electronic energy for H2+ in the ground state, J. Chem. Phys. 42: 2371 (1965).Google Scholar
  5. 5.
    R. F. W. Bader, I. Keavenly and P. E. Cade, Molecular charge distrinbutions and chemical binding. II. First-row diatomic hydrides, AH, J. Chem. Phys. 47:3381 (1967). The contour maps by Bader et aZ. do not give the internuclear distances. For the internuclear distances, see P. E. Cade and W. M. Huo, Electronic structure of diatomic molecules. VI. A. HartreeFock wave functions and energy quantities for the ground state of the first row hydrides, AH, J. Chem. Phys. 47: 614 (1967).Google Scholar
  6. 6.
    R. F. W. Bader, T. T. Nguyen-Dang and Y. Tal, Quantum topology of molecular charge distributions. II. Molecular structure and its change, J. Chem. Phys. 70: 4316 (1979).CrossRefGoogle Scholar
  7. 7.
    R. F. W. Bader, S. G. Anderson and A. J. Duke, Quantum topology of molecular charge distributions. 1, J. Am. Chem. Soc. 101:1389 (1979). For the geometry, see L. S. Bartell and B. L. Carroll, Electron-diffraction study of diborane and deuterodiborane, J. Chem. Phys. 42: 1135 (1965).Google Scholar
  8. 8.
    E. Teller, On the stability of molecules in the Thomas-Fermi Theory, Rev. Mod. Phys. 34:627 (1962); N. L. Balâzs, Formation of stable molecules within the statistical theory of atoms, Phys. Rev. 156: 42 (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Robert G. Parr
    • 1
  • Alexander Berk
    • 1
  1. 1.Department of ChemistryUniversity of North CarolinaChapel HillUSA

Personalised recommendations