Skip to main content

Correlation Energies from Hartree-Fock Electrostatic Potentials at Nuclei and Generation of Electrostatic Potentials from Asymptotic and Zero-Order Information

  • Chapter
Chemical Applications of Atomic and Molecular Electrostatic Potentials

Abstract

It has been recognized 1-16 that electrostatic potentials at the nuclei of atoms and molecules play key roles in determining total energies. (For an overview, see the preceeding chapter by Politzer). It has also been recognized that the Hellmann-Feynman theorem provides a fundamental link between an energy change and the electrostatic potential at the nucleus caused by the electrons. The latter will be called the EPN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. L. Foldy, A note on atomic binding energies, Phys. Rev. 83: 397 (1951).

    Article  CAS  Google Scholar 

  2. E. B. Wilson, Four-dimensional electron density function, J. Chem. Phys. 36: 2232 (1962).

    Article  CAS  Google Scholar 

  3. S. Fraga, Non-relativistic self-consistent-field theory. II, Theoret. Chim. Acta 2: 406 (1964).

    Article  CAS  Google Scholar 

  4. R. Gâspdr, Many-electron problems. I. Energy relations in the theory of neutral atoms, Int. J. Quantum Chem. 1: 139 (1967).

    Article  Google Scholar 

  5. P. Politzer and R. G. Parr, Some new energy formulas for atoms and molecules, J. Chem. Phys. 61: 4258 (1974).

    Article  CAS  Google Scholar 

  6. P. Politzer, Some approximate energy relationships for molecules, J. Chem. Phys. 64: 4239 (1976).

    Article  CAS  Google Scholar 

  7. R. G. Parr, R. A. Donnelly, M. Levy and W. E. Palke, Electronegativity; the density functional viewpoint, J. Chem. Phys. 68: 3801 (1978).

    Article  CAS  Google Scholar 

  8. P. Politzer, Observations on the significance of the electrostatic potentials at the nuclei of atoms and molecules, in: “The Theory of Molecular Structure and Bonding,” R. Pauncz and E. A. Halevi, eds., Israel J. Chem. (Special issue) 19:224 (1980).

    Google Scholar 

  9. P. Politzer, Electrostatic potential-electronic density relationships in atoms, J. Chem. Phys. 72: 3027 (1980).

    Article  CAS  Google Scholar 

  10. M. Levy, Variational energy functionals involving one-electron operator, J. Chem. Phys. 67: 724 (1977).

    Article  CAS  Google Scholar 

  11. M. Levy, An energy-density equation for isoelectronic changes in atoms, J. Chem. Phys. 68: 5298 (1978).

    Article  CAS  Google Scholar 

  12. M. Levy, On approximate energy differences from average electron densities, J. Chem. Phys. 70: 1573 (1979).

    Article  CAS  Google Scholar 

  13. K. D. Sen, The isoelectronic energy-density relationship in atoms, J. Chem. Phys. 71: 3551 (1979).

    Article  CAS  Google Scholar 

  14. M. Levy and Y. Tal, Atomic binding energies from fundamental theorems involving the electron density, r-1, and the Z-1 perturbation expansion, J. Chem. Phys. 72: 3416 (1980).

    Article  CAS  Google Scholar 

  15. Y. Tal and M. Levy, Rigorous and approximate relations between expectation values of atoms, J. Chem. Phys. 72: 4009 (1980).

    Article  CAS  Google Scholar 

  16. M. Levy and Y. Tal, Energy-density relations and screening constants in atoms, J. Chem. Phys., in press.

    Google Scholar 

  17. J. K. Percus, The role of model systems in the few-body reduction of the N-fermion problem, Int. J. Quantum Chem. 13: 89 (1978).

    Article  CAS  Google Scholar 

  18. E. R. Davidson, “Reduced Density Matrices Quantum Chemistry,” Academic Press, New York (1976).

    Google Scholar 

  19. L. J. Schaad, B. H. Robinson and B. A. Hess, Jr., The relation between orbital SCF energies and total SCF energies in molecules, J. Chem. Phys. 67: 4616 (1977).

    Article  CAS  Google Scholar 

  20. A. J. Thakkar and V. H. Smith, Jr., Compact and accurate integral-transform wave functions, Phys. Rev. A 15: 1 (1977).

    Article  CAS  Google Scholar 

  21. G. G. Hall, The stability of a wave function under a perturbation, Phil. Mag. 62: 249 (1961).

    Google Scholar 

  22. P. Politzer and K. C. Daiker, Some potential-energy relationships for isoelectronic atomic series, Int. J. Quantum Chem. 14: 245 (1978).

    Article  CAS  Google Scholar 

  23. E. A. Hylleraas, The Schrödinger two-electron problems, in: “Advances in Quantum Chemistry,” Vol. 1, P.-0. Löwdin, ed., Academic Press, New York (1964), p. 1.

    Google Scholar 

  24. J. Linderberg and H. Shull, Electronic correlation energy in Sand 4-electron atoms, J. Mol. Spectrosc. 5: 1 (1960).

    Article  CAS  Google Scholar 

  25. J. O. Hirschfelder, W. Byers Brown and S. T. Epstein, Recent developments in perturbation theory, in: “Advances in Quantum Chemistry,” Vol. 1, P.-0. Löwdin, ed., Academic Press, New York (1964), p. 256.

    Google Scholar 

  26. P. 0. Löwdin, Scaling problems, virial theorem and connected relations in quantum mechanics, J. Mol. Spectrosc. 3: 46 (1959).

    Article  Google Scholar 

  27. M. Cohen, On the systematic linear variation of atomic expectation values, J. Phys. B 12: L219 (1979).

    Article  CAS  Google Scholar 

  28. R. P. Iczkowski and J. L. Margrave, J. Am. Chem. Soc. 83: 3547 (1961).

    Article  CAS  Google Scholar 

  29. M. Levy, Y. Tal and S. Clement, to be published.

    Google Scholar 

  30. G. C. Lie and E. Clementi, Study of the electronic structure of molecules. XXI. Correlation energy corrections as a functional of the Hartree-Fock density and its application to the hydrides of the second row atoms, J. Chem. Phys. 60: 1275 (1974).

    Article  CAS  Google Scholar 

  31. M. Levy, S. Clement and J. P. Perdew, Total electron binding energies in atoms from zero-order wave functions, Bull. Am. Phys. Soc. 24: 626 (1979).

    Google Scholar 

  32. E. H. Lieb and B. Simon, Thomas-Fermi theory revisited, Phys. Rev. Lett. 31: 631 (1973).

    Article  Google Scholar 

  33. N. H. March, The Thomas-Fermi approximation in quantum mechanics, Adv. Phys. 6: 1 (1957).

    Google Scholar 

  34. J. Goodisman, Modified quantum-statistical calculations for atomic electron densities, Phys. Rev. A 2: 1193 (1970).

    Article  Google Scholar 

  35. J. Goodisman, Energy levels in modified quantum statistical potentials, Theoret. Chim. Acta 24: 1 (1972).

    Article  CAS  Google Scholar 

  36. N. H. March, “Self-Consistent Fields in Atoms,” Pergamon Press, Oxford (1975).

    Google Scholar 

  37. N. H. March and R. J. White, Non-relativistic theory of atomic and ionic binding energies for large atomic number, J. Phys. B 5: 466 (1972).

    Article  CAS  Google Scholar 

  38. C. F. Fischer, “The Hartree-Fock Method for Atoms,” John Wiley and Sons, New York (1972).

    Google Scholar 

  39. R. G. Parr, S. R. Gadre and L. J. Bartolotti, Local density functional theory of atoms and molecules, Proc. Nat. Acad. Sci. U.S.A. 76: 2522 (1979).

    Article  CAS  Google Scholar 

  40. J. Sucher, Ground-state energy of any atom, J. Phys. B 11: 1515 (1978).

    Article  CAS  Google Scholar 

  41. K. D. Sen, An approximate density equation for isoelectronic changes in atoms, J. Chem. Phys. 70: 5334 (1979).

    Article  CAS  Google Scholar 

  42. Y. Tal and M. Levy, Expectation values of atoms and ions: The Thomas-Fermi limit, Phys. Rev. A, accepted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levy, M., Clement, S.C., Tal, Y. (1981). Correlation Energies from Hartree-Fock Electrostatic Potentials at Nuclei and Generation of Electrostatic Potentials from Asymptotic and Zero-Order Information. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics