Correlation Energies from Hartree-Fock Electrostatic Potentials at Nuclei and Generation of Electrostatic Potentials from Asymptotic and Zero-Order Information

  • Mel Levy
  • Stephen C. Clement
  • Yoram Tal

Abstract

It has been recognized 1-16 that electrostatic potentials at the nuclei of atoms and molecules play key roles in determining total energies. (For an overview, see the preceeding chapter by Politzer). It has also been recognized that the Hellmann-Feynman theorem provides a fundamental link between an energy change and the electrostatic potential at the nucleus caused by the electrons. The latter will be called the EPN.

Keywords

Ionization Potential Recursion Relation Neutral Atom Correlation Energy Nuclear Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. Foldy, A note on atomic binding energies, Phys. Rev. 83: 397 (1951).CrossRefGoogle Scholar
  2. 2.
    E. B. Wilson, Four-dimensional electron density function, J. Chem. Phys. 36: 2232 (1962).CrossRefGoogle Scholar
  3. 3.
    S. Fraga, Non-relativistic self-consistent-field theory. II, Theoret. Chim. Acta 2: 406 (1964).CrossRefGoogle Scholar
  4. 4.
    R. Gâspdr, Many-electron problems. I. Energy relations in the theory of neutral atoms, Int. J. Quantum Chem. 1: 139 (1967).CrossRefGoogle Scholar
  5. 5.
    P. Politzer and R. G. Parr, Some new energy formulas for atoms and molecules, J. Chem. Phys. 61: 4258 (1974).CrossRefGoogle Scholar
  6. 6.
    P. Politzer, Some approximate energy relationships for molecules, J. Chem. Phys. 64: 4239 (1976).CrossRefGoogle Scholar
  7. 7.
    R. G. Parr, R. A. Donnelly, M. Levy and W. E. Palke, Electronegativity; the density functional viewpoint, J. Chem. Phys. 68: 3801 (1978).CrossRefGoogle Scholar
  8. 8.
    P. Politzer, Observations on the significance of the electrostatic potentials at the nuclei of atoms and molecules, in: “The Theory of Molecular Structure and Bonding,” R. Pauncz and E. A. Halevi, eds., Israel J. Chem. (Special issue) 19:224 (1980).Google Scholar
  9. 9.
    P. Politzer, Electrostatic potential-electronic density relationships in atoms, J. Chem. Phys. 72: 3027 (1980).CrossRefGoogle Scholar
  10. 10.
    M. Levy, Variational energy functionals involving one-electron operator, J. Chem. Phys. 67: 724 (1977).CrossRefGoogle Scholar
  11. 11.
    M. Levy, An energy-density equation for isoelectronic changes in atoms, J. Chem. Phys. 68: 5298 (1978).CrossRefGoogle Scholar
  12. 12.
    M. Levy, On approximate energy differences from average electron densities, J. Chem. Phys. 70: 1573 (1979).CrossRefGoogle Scholar
  13. 13.
    K. D. Sen, The isoelectronic energy-density relationship in atoms, J. Chem. Phys. 71: 3551 (1979).CrossRefGoogle Scholar
  14. 14.
    M. Levy and Y. Tal, Atomic binding energies from fundamental theorems involving the electron density, r-1, and the Z-1 perturbation expansion, J. Chem. Phys. 72: 3416 (1980).CrossRefGoogle Scholar
  15. 15.
    Y. Tal and M. Levy, Rigorous and approximate relations between expectation values of atoms, J. Chem. Phys. 72: 4009 (1980).CrossRefGoogle Scholar
  16. 16.
    M. Levy and Y. Tal, Energy-density relations and screening constants in atoms, J. Chem. Phys., in press.Google Scholar
  17. 17.
    J. K. Percus, The role of model systems in the few-body reduction of the N-fermion problem, Int. J. Quantum Chem. 13: 89 (1978).CrossRefGoogle Scholar
  18. 18.
    E. R. Davidson, “Reduced Density Matrices Quantum Chemistry,” Academic Press, New York (1976).Google Scholar
  19. 19.
    L. J. Schaad, B. H. Robinson and B. A. Hess, Jr., The relation between orbital SCF energies and total SCF energies in molecules, J. Chem. Phys. 67: 4616 (1977).CrossRefGoogle Scholar
  20. 20.
    A. J. Thakkar and V. H. Smith, Jr., Compact and accurate integral-transform wave functions, Phys. Rev. A 15: 1 (1977).CrossRefGoogle Scholar
  21. 21.
    G. G. Hall, The stability of a wave function under a perturbation, Phil. Mag. 62: 249 (1961).Google Scholar
  22. 22.
    P. Politzer and K. C. Daiker, Some potential-energy relationships for isoelectronic atomic series, Int. J. Quantum Chem. 14: 245 (1978).CrossRefGoogle Scholar
  23. 23.
    E. A. Hylleraas, The Schrödinger two-electron problems, in: “Advances in Quantum Chemistry,” Vol. 1, P.-0. Löwdin, ed., Academic Press, New York (1964), p. 1.Google Scholar
  24. 24.
    J. Linderberg and H. Shull, Electronic correlation energy in Sand 4-electron atoms, J. Mol. Spectrosc. 5: 1 (1960).CrossRefGoogle Scholar
  25. 25.
    J. O. Hirschfelder, W. Byers Brown and S. T. Epstein, Recent developments in perturbation theory, in: “Advances in Quantum Chemistry,” Vol. 1, P.-0. Löwdin, ed., Academic Press, New York (1964), p. 256.Google Scholar
  26. 26.
    P. 0. Löwdin, Scaling problems, virial theorem and connected relations in quantum mechanics, J. Mol. Spectrosc. 3: 46 (1959).CrossRefGoogle Scholar
  27. 27.
    M. Cohen, On the systematic linear variation of atomic expectation values, J. Phys. B 12: L219 (1979).CrossRefGoogle Scholar
  28. 28.
    R. P. Iczkowski and J. L. Margrave, J. Am. Chem. Soc. 83: 3547 (1961).CrossRefGoogle Scholar
  29. 29.
    M. Levy, Y. Tal and S. Clement, to be published.Google Scholar
  30. 30.
    G. C. Lie and E. Clementi, Study of the electronic structure of molecules. XXI. Correlation energy corrections as a functional of the Hartree-Fock density and its application to the hydrides of the second row atoms, J. Chem. Phys. 60: 1275 (1974).CrossRefGoogle Scholar
  31. 31.
    M. Levy, S. Clement and J. P. Perdew, Total electron binding energies in atoms from zero-order wave functions, Bull. Am. Phys. Soc. 24: 626 (1979).Google Scholar
  32. 32.
    E. H. Lieb and B. Simon, Thomas-Fermi theory revisited, Phys. Rev. Lett. 31: 631 (1973).CrossRefGoogle Scholar
  33. 33.
    N. H. March, The Thomas-Fermi approximation in quantum mechanics, Adv. Phys. 6: 1 (1957).Google Scholar
  34. 34.
    J. Goodisman, Modified quantum-statistical calculations for atomic electron densities, Phys. Rev. A 2: 1193 (1970).CrossRefGoogle Scholar
  35. 35.
    J. Goodisman, Energy levels in modified quantum statistical potentials, Theoret. Chim. Acta 24: 1 (1972).CrossRefGoogle Scholar
  36. 36.
    N. H. March, “Self-Consistent Fields in Atoms,” Pergamon Press, Oxford (1975).Google Scholar
  37. 37.
    N. H. March and R. J. White, Non-relativistic theory of atomic and ionic binding energies for large atomic number, J. Phys. B 5: 466 (1972).CrossRefGoogle Scholar
  38. 38.
    C. F. Fischer, “The Hartree-Fock Method for Atoms,” John Wiley and Sons, New York (1972).Google Scholar
  39. 39.
    R. G. Parr, S. R. Gadre and L. J. Bartolotti, Local density functional theory of atoms and molecules, Proc. Nat. Acad. Sci. U.S.A. 76: 2522 (1979).CrossRefGoogle Scholar
  40. 40.
    J. Sucher, Ground-state energy of any atom, J. Phys. B 11: 1515 (1978).CrossRefGoogle Scholar
  41. 41.
    K. D. Sen, An approximate density equation for isoelectronic changes in atoms, J. Chem. Phys. 70: 5334 (1979).CrossRefGoogle Scholar
  42. 42.
    Y. Tal and M. Levy, Expectation values of atoms and ions: The Thomas-Fermi limit, Phys. Rev. A, accepted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Mel Levy
    • 1
  • Stephen C. Clement
    • 1
  • Yoram Tal
    • 2
  1. 1.Department of Chemistry and Quantum Theory GroupTulane UniversityNew OrleansUSA
  2. 2.Department of ChemistryMcMaster UniversityHamiltonCanada

Personalised recommendations