Skip to main content

Relationships between the Energies of Atoms and Molecules and the Electrostatic Potentials at Their Nuclei

  • Chapter
Chemical Applications of Atomic and Molecular Electrostatic Potentials

Abstract

This discussion shall focus upon the interesting and important observation that the energies of atoms and molecules can be related, both exactly and approximately, to the electrostatic potentials at their nuclei. This observation, which reveals a new route for determining total energies, is of considerable significance for several reasons. The electrostatic potential is a real physical property, and can be obtained from the electronic density function, as shall be shown below. Thus, from a theoretical point of view, the developments to be discussed are in the domain of density functional theory. No wave functions need necessarily enter the picture. Indeed since electronic densities can be determined experimentally, for example by X-ray diffraction or by electron diffraction,1–7 it follows that accurate and effective relationships between total energies and electrostatic potentials will permit energy quantities to be derived from such experimental measurements, even for very large systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. S. Bartell and R. M. Gavin, Jr., Effects of electron correlation in X-ray and electron diffraction, J. Am. Chem. Soc. 86: 3493 (1964).

    Article  CAS  Google Scholar 

  2. R. L. Hilderbrandt and R. A. Bonham, Structure determination by electron diffraction, in: “Annual Reviews of Physical Chemistry,” Vol. 22, H. Eyring, ed., Annual Reviews, Inc., Palo Alto, CA (1971) p. 279.

    Google Scholar 

  3. M. Fink, D. Gregory and P. G. Moore, Experimental determination of the charge density of the bond-forming electrons in N2, Phys. Rev. Lett. 37: 15 (1976).

    Article  CAS  Google Scholar 

  4. P. Coppens and E. D. Stevens, Accurate X-ray diffraction and quantum chemistry: The study of charge density distributions, in “Advances in Quantum Chemistry,” Vol. 10, P.-0. Lowdin, ed., Academic Press, New York (1977) p. 1.

    Google Scholar 

  5. Electron Density Mapping in Molecules and Crystals,“ F. L. Hírshfeld, ed., Israel J. Chem. 16:Nos. 2–3 (1977).

    Google Scholar 

  6. J. Bentley, Determination of electronic energies from experimental electron densities, J. Chem. Phys. 70: 159 (1979).

    Article  CAS  Google Scholar 

  7. R. F. Stewart, On the mapping of electrostatic properties from Bragg diffraction data, Chem. Phys. Lett. 65: 335 (1979).

    Article  CAS  Google Scholar 

  8. P. Politzer, Some approximate energy relationships for molecules, J. Chem. Phys. 64: 4239 (1976).

    Article  CAS  Google Scholar 

  9. a) C. Moller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Phys. Rev. 46: 618 (1934);

    Article  Google Scholar 

  10. M. Cohen and A. Dalgarno, Stationary properties of the Hartree-Fock approximation, Proc. Phys. Soc. (London) 77: 748 (1961);

    Article  CAS  Google Scholar 

  11. J. A. Pople and R. Seeger, Electron density in Moller-Plesset theory, J. Chem. Phys. 62: 4566 (1975).

    Article  CAS  Google Scholar 

  12. P. Politzer, A study of the bonding in the hydrogen molecule, J. Phys. Chem. 70: 1174 (1966);

    Article  CAS  Google Scholar 

  13. D. Neumann and J. W. Moskowitz, One-electron properties of near-Hartree-Fock wave-functions. I. Water, J. Chem. Phys. 49: 2056 (1968);

    Article  CAS  Google Scholar 

  14. D. Neumann and J. W. Moskowitz, Linear homogeneous constrained variation procedure for molecular wavefunctions, J. Chem. Phys. 50: 2216

    Google Scholar 

  15. T. H. Dunning, Jr., R. M. Pitzer and S. Aung, Near Hartree-Fock calculations on the ground state of the water molecule: Energies, ionization potentials, force constants, and one-electron properties, J. Chem. Phys. 57: 5044 (1972);

    Article  CAS  Google Scholar 

  16. D. G. Truhlar, F. A. Van-Catledge and T. H. Dunning, ab initio and semi-empirical calculations of the static potential for electron scattering off the nitrogen molecule, J. Chem. Phys. 57:4788 (1972), 69: 2941 (E) (1978);

    Google Scholar 

  17. D. G. Truhlar and F. A. Van-Catledge, Tests of approximate methods of calculation of the static potential for electron scattering by CO, J. Chem. Phys. 59:3207 (1973), 69: 2942 (E) (1978);

    Google Scholar 

  18. D. G. Truhlar and F. A. Van-Catledge, Tests of INDO/ls and INDOXI/ls methods for the calculation of the static potential for electron scattering by CO, J. Chem. Phys. 65:5536 (1976), 69: 2942 (E) (1978);

    Google Scholar 

  19. P. Politzer, An improved approximate energy formula for molecules, J. Chem. Phys. 70: 1067 (1979).

    Article  CAS  Google Scholar 

  20. P. Politzer, Observations on the significance of the electrostatic potentials at the nuclei of atoms and molecules, in: “The Theory of Molecular Structure and Bonding,” R. Pauncz and E. A. Halevi, eds., Israel J. Chem. (special issue) 19:224 (1980).

    Google Scholar 

  21. See, for example, E. U. Condon, Basic electromagnetic phenomena, in: “Handbook of Physics,” E. U. Condon and H. Odishaw, eds., McGraw-Hill Book Co., New York (1958) Part 4, Ch. 1.

    Google Scholar 

  22. P. Politzer and R. G. Parr, Some new energy formulas for atoms and molecules, J. Chem. Phys. 61: 4258 (1974).

    Article  CAS  Google Scholar 

  23. N. H. March, The Thomas-Fermi approximation in quantum mechanics, Adv. Phys. 6: 1 (1957);

    Google Scholar 

  24. H. A. Bethe and R. W. Jackiw, “Intermediate Quantum Mechanics,” 2nd ed., W. A. Benjamin, Inc., New York (1968) Ch. 5; J. Goodisman, Modified quantum-statistical calculations for atomic electron densities, Phys. Rev. A2:1193 (1970);

    Google Scholar 

  25. J. Goodisman, Energy levels in modified quantum statistical potentials, Theoret. Chim. Acta 24: 1 (1972).

    Article  CAS  Google Scholar 

  26. E. A. Milne, The total energy of binding of a heavy atom, Proc. Cambridge Philos. Soc. 23: 794 (1927).

    CAS  Google Scholar 

  27. S. Fraga, Non-relativistic self-consistent-field theory. II., Theoret. Chim. Acta 2: 406 (1964).

    Article  CAS  Google Scholar 

  28. P. Politzer, Electrostatic potential - electronic density relationships in atoms, J. Chem. Phys. 72: 3027 (1980).

    Article  CAS  Google Scholar 

  29. E. Clementi, “Tables of Atomic Functions,” IBM Corp., San Jose, CA (1965).

    Google Scholar 

  30. P. Politzer and R. G. Parr, Separation of core and valence regions in atoms, J. Chem. Phys. 64: 4634 (1976).

    Article  CAS  Google Scholar 

  31. S. Fliszar and H. Henry, Charge distributions and chemical effects. XVI. Valence electron energies in atoms and ions, J. Chem. Phys. 67: 2345 (1977);

    Article  CAS  Google Scholar 

  32. S. Fliszar, Charge distributions and chemical effects. XVII. Valence region energies and electronegativity of atoms and charged species, J. Chem. Phys. 69: 237 (1978).

    Article  CAS  Google Scholar 

  33. W.-P. Wang and R. G. Parr, Statistical atomic models with piecewise exponentially decaying electron densities, Phys. Rev. A16: 891 (1977).

    CAS  Google Scholar 

  34. P. Politzer, J. Reuther and G. T. Kasten, Core regions in molecules, J. Chem. Phys. 67: 2385 (1977).

    Article  CAS  Google Scholar 

  35. R. J. Boyd, Electron density partitioning in atoms, J. Chem. Phys. 66: 356 (1977).

    Article  CAS  Google Scholar 

  36. P. Politzer, Electrostatic potential - electronic density relationships in atoms. II., J. Chem. Phys. 73: in press.

    Google Scholar 

  37. P. Politzer, Some approximate energy relationships for ground and excited states of diatomic molecules and molecular-ions, J. Chem. Phys. 69: 491 (1978).

    Article  CAS  Google Scholar 

  38. P. Politzer, An improved approximate energy formula for molecules, J. Chem. Phys. 70: 1067 (1979).

    Article  CAS  Google Scholar 

  39. T. Anno, Finer examination of Politzer’s improved approximate energy formula for molecules, J. Chem. Phys. 72: 782 (1980);

    Article  CAS  Google Scholar 

  40. T. Anno, paper presented at 3rd International Congress of Quantum Chemistry, Kyoto, Japan, Oct. 25 - Nov. 3, 1979.

    Google Scholar 

  41. S. Fliszar and D. Salahub, Charge distributions and chemical effects. XVIII. On the relationship between total valence-electron energies and nuclear-electronic interaction energies in atoms and ions, J. Chem. Phys. 69: 3321 (1978).

    Article  CAS  Google Scholar 

  42. S. Fliszar, Charge distributions and chemical effects. XXI. A new energy formula for molecules, J. Chem. Phys. 71:700 (1979); S. Fliszar and M.-T. Beraldin, Charge distributions and chemical effects. XXII. On the partitioning of molecular energies and the relationships between energy components, J. Chem. Phys. 72: 1013 (1980).

    Article  CAS  Google Scholar 

  43. K. Ruedenberg, An approximate relation between orbital SCF energies and total SCF energy in molecules, J. Chem. Phys. 66: 375 (1977).

    Google Scholar 

  44. L. J. Schaad, B. H. Robinson and B. A. Hess, Jr., The relation between orbital SCF energies and total SCF energies in molecules, J. Chem. Phys. 67: 4616 (1977).

    Article  CAS  Google Scholar 

  45. N. H. March, Relation between the total energy and eigenvalue sum for neutral atoms and molecules, J. Chem. Phys. 67: 4618 (1977).

    Article  CAS  Google Scholar 

  46. S.-T. Wu, The relation between orbital SCF energies and total SCF energies in positive atomic ions, J. Chem. Phys. 69: 2934 (1978).

    Article  CAS  Google Scholar 

  47. M. Kertesz, J. Keller and A. Azman, On Hartree-Fock orbital and total energies in extended systems, J. Chem. Phys. 69: 2937 (1978).

    Article  CAS  Google Scholar 

  48. T. Anno and Y. Sakai, A remark on the relation between HartreeFock orbital energies and the Hartree-Fock total energy in molecules, J. Chem. Phys. 67: 4771 (1977).

    Article  CAS  Google Scholar 

  49. T. Anno, The Politzer and the Ruedenberg type energy relations for molecules in their nonequilibrium configurations, J. Chem. Phys. 69: 5213 (1978).

    Article  CAS  Google Scholar 

  50. G. I. Plindov and S. K. Pogrebnya, On the relation between the total SCF energy and the eigenvalue sum for atoms and molecules, Chem. Phys. Lett. 59: 265 (1978).

    Article  CAS  Google Scholar 

  51. C. V. R. Rao and K. D. Sen, The total Hartree-Fock SCF energy in atoms and ions, J. Chem. Phys. 70: 586 (1979).

    Article  CAS  Google Scholar 

  52. D. B. Boyd, Approximate relations between orbital SCF energies and total SCF energies in molecules, J. Chem. Phys. 67: 1787 (1977).

    Google Scholar 

  53. A. B. Sannigrahi, B. R. De and B. Guha Niyogi, On the relation between orbital SCF energies and total SCF energy in molecules, J. Chem. Phys. 68: 784 (1978).

    Article  CAS  Google Scholar 

  54. P. Politzer, K. C. Daiker and P. Trefonas III, A proposed formula for the energy of an atom in a molecule, J. Chem. Phys. 70: 4400 (1979).

    Article  CAS  Google Scholar 

  55. M. Levy, Variational energy functionals involving one-electron operators, J. Chem. Phys. 67:724 (1977); M. Levy, An energy-density equation for isoelectronic changes in atoms, J. Chem. Phys. 68:5298 (1978); M. Levy, On approximate energy differences from average electron densities, J. Chem. Phys. 70:1573 (. 1979 ).

    Google Scholar 

  56. M. Levy and Y. Tal, Atomic binding energies from fundamental theorems involving the electron density, Sr-1, and the Z-1 perturbation expansion, J. Chem. Phys. 72: 3416 (1980).

    Article  CAS  Google Scholar 

  57. L. C. Snyder and H. Basch, ‘Molecular Wave Functions and Properties,“ Wiley-Interscience, New York (1972).

    Google Scholar 

  58. R. G. Parr, R. A. Donnelly, M. Levy and W. E. Palke, Electronegativity: The density functional viewpoint, J. Chem. Phys. 68:3801 (1978); R. A. Donnelly and R. G. Parr, Elementary properties of an energy functional of the first-order reduced density matrix, J. Chem. Phys. 69: 4431 (1978).

    Google Scholar 

  59. E. P. Gyftopoulos and G. N. Hatsopoulos, Quantum-thermodynamic definition of electronegativity, Proc. Nat. Acad. Sci. U.S.A. 60: 786 (1968).

    Article  CAS  Google Scholar 

  60. P. Politzer and H. Weinstein, Some relations between electronic distribution and electronegativity, J. Chem. Phys. 71: 4218 (1979).

    Article  CAS  Google Scholar 

  61. See also J. Hinze, M. A. Whitehead and H. H. Jaffe, Electronegativity. II. Bond and orbital electronegativities, J. Am. Chem. Soc. 85: 148 (1963);

    Article  Google Scholar 

  62. G. Klopman, A semiempïrical treatment of molecular structures. I. Electronegativity and atomic terms, J. Am. Chem. Soc. 86: 1463 (1964);

    Article  CAS  Google Scholar 

  63. N. C. Baird, J. M. Sichel and M. A. Whitehead, A molecular orbital approach to electronegativity equalization, Theoret. Chim. Acta 11: 38 (1968).

    Article  CAS  Google Scholar 

  64. R. T. Sanderson, An interpretation of bond lengths in alkali halide gas molecules, J. Am. Chem. Soc. 74: 272 (1952);

    Article  CAS  Google Scholar 

  65. R. T. Sanderson, Partial charges on atoms in organic compounds, Science 121: 207 (1955);

    Article  CAS  Google Scholar 

  66. R. T. Sanderson, “Chemical Bonds and Bond Energy,” Academic Press, New York (1971).

    Google Scholar 

  67. H. Basch, On the interpretation of K-shell electron binding energy chemical shifts in molecules, Chem. Phys. Lett. 5: 337 (1970);

    Article  CAS  Google Scholar 

  68. M. E. Schwartz, Correlation of is binding energy with the average quantum mechanical potential at a nucleus, Chem. Phys. Lett. 6: 631 (1970).

    Article  CAS  Google Scholar 

  69. N. F. Ramsey, Magnetic shielding of nuclei in molecules, Phys. Rev. 78: 699 (1950);

    Article  CAS  Google Scholar 

  70. T. D. Gierke and W. H. Flygare, An empirical evaluation of the individual elements in the nuclear diamagnetic shielding tensor by the atom dipole method, J. Am. Chem. Soc. 94: 7277 (1972).

    Article  CAS  Google Scholar 

  71. M. Barber, P. Swift, D. Cunningham and M. J. Frazer, Correlation between core level shifts in electron spectroscopy and chemical shifts in Mossbauer spectroscopy, J. Chem. Soc., Chem. Commun. 1338 (1970);

    Google Scholar 

  72. I. Adams, J. M. Thomas, G. M. Bancroft, K. D. Butler and M. Barber, Correlation between core-electron binding energies and Mossbauer chemical isomer shifts for inorganic complexes containing iron(II) low spin, J. Chem. Soc., Chem. Commun. 751 (1972);

    Google Scholar 

  73. W. E. Swartz, Jr., P. H. Watts, Jr., E. R. Lippincott, J. C. Watts and J. E. Huheey, X-ray photoelectron spectroscopy of tin. I. Hexahalostannates, Inorg. Chem. 11: 2632 (1972);

    CAS  Google Scholar 

  74. L. Y. Johansson, R. Larsson, J. Blomquïst, C. Cederstrom, S. Grapengiesser, U. Helgeson, L. C. Moberg and M. Sundbom, X-ray photoelectron and Mossbauer spectroscopy on a variety of iron compounds, Chem. Phys. Lett. 24: 508 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Politzer, P. (1981). Relationships between the Energies of Atoms and Molecules and the Electrostatic Potentials at Their Nuclei. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics