Relationships between the Energies of Atoms and Molecules and the Electrostatic Potentials at Their Nuclei

  • Peter Politzer

Abstract

This discussion shall focus upon the interesting and important observation that the energies of atoms and molecules can be related, both exactly and approximately, to the electrostatic potentials at their nuclei. This observation, which reveals a new route for determining total energies, is of considerable significance for several reasons. The electrostatic potential is a real physical property, and can be obtained from the electronic density function, as shall be shown below. Thus, from a theoretical point of view, the developments to be discussed are in the domain of density functional theory. No wave functions need necessarily enter the picture. Indeed since electronic densities can be determined experimentally, for example by X-ray diffraction or by electron diffraction,1–7 it follows that accurate and effective relationships between total energies and electrostatic potentials will permit energy quantities to be derived from such experimental measurements, even for very large systems.

Keywords

Electrostatic Potential Free Atom Valence Region Energy Formula Boron Hydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Bartell and R. M. Gavin, Jr., Effects of electron correlation in X-ray and electron diffraction, J. Am. Chem. Soc. 86: 3493 (1964).CrossRefGoogle Scholar
  2. 2.
    R. L. Hilderbrandt and R. A. Bonham, Structure determination by electron diffraction, in: “Annual Reviews of Physical Chemistry,” Vol. 22, H. Eyring, ed., Annual Reviews, Inc., Palo Alto, CA (1971) p. 279.Google Scholar
  3. 3.
    M. Fink, D. Gregory and P. G. Moore, Experimental determination of the charge density of the bond-forming electrons in N2, Phys. Rev. Lett. 37: 15 (1976).CrossRefGoogle Scholar
  4. 4.
    P. Coppens and E. D. Stevens, Accurate X-ray diffraction and quantum chemistry: The study of charge density distributions, in “Advances in Quantum Chemistry,” Vol. 10, P.-0. Lowdin, ed., Academic Press, New York (1977) p. 1.Google Scholar
  5. 5.
    Electron Density Mapping in Molecules and Crystals,“ F. L. Hírshfeld, ed., Israel J. Chem. 16:Nos. 2–3 (1977).Google Scholar
  6. 6.
    J. Bentley, Determination of electronic energies from experimental electron densities, J. Chem. Phys. 70: 159 (1979).CrossRefGoogle Scholar
  7. 7.
    R. F. Stewart, On the mapping of electrostatic properties from Bragg diffraction data, Chem. Phys. Lett. 65: 335 (1979).CrossRefGoogle Scholar
  8. 8.
    P. Politzer, Some approximate energy relationships for molecules, J. Chem. Phys. 64: 4239 (1976).CrossRefGoogle Scholar
  9. 9.
    a) C. Moller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Phys. Rev. 46: 618 (1934);CrossRefGoogle Scholar
  10. M. Cohen and A. Dalgarno, Stationary properties of the Hartree-Fock approximation, Proc. Phys. Soc. (London) 77: 748 (1961);CrossRefGoogle Scholar
  11. J. A. Pople and R. Seeger, Electron density in Moller-Plesset theory, J. Chem. Phys. 62: 4566 (1975).CrossRefGoogle Scholar
  12. (b).
    P. Politzer, A study of the bonding in the hydrogen molecule, J. Phys. Chem. 70: 1174 (1966);CrossRefGoogle Scholar
  13. D. Neumann and J. W. Moskowitz, One-electron properties of near-Hartree-Fock wave-functions. I. Water, J. Chem. Phys. 49: 2056 (1968);CrossRefGoogle Scholar
  14. D. Neumann and J. W. Moskowitz, Linear homogeneous constrained variation procedure for molecular wavefunctions, J. Chem. Phys. 50: 2216Google Scholar
  15. T. H. Dunning, Jr., R. M. Pitzer and S. Aung, Near Hartree-Fock calculations on the ground state of the water molecule: Energies, ionization potentials, force constants, and one-electron properties, J. Chem. Phys. 57: 5044 (1972);CrossRefGoogle Scholar
  16. D. G. Truhlar, F. A. Van-Catledge and T. H. Dunning, ab initio and semi-empirical calculations of the static potential for electron scattering off the nitrogen molecule, J. Chem. Phys. 57:4788 (1972), 69: 2941 (E) (1978);Google Scholar
  17. D. G. Truhlar and F. A. Van-Catledge, Tests of approximate methods of calculation of the static potential for electron scattering by CO, J. Chem. Phys. 59:3207 (1973), 69: 2942 (E) (1978);Google Scholar
  18. D. G. Truhlar and F. A. Van-Catledge, Tests of INDO/ls and INDOXI/ls methods for the calculation of the static potential for electron scattering by CO, J. Chem. Phys. 65:5536 (1976), 69: 2942 (E) (1978);Google Scholar
  19. P. Politzer, An improved approximate energy formula for molecules, J. Chem. Phys. 70: 1067 (1979).CrossRefGoogle Scholar
  20. 10.
    P. Politzer, Observations on the significance of the electrostatic potentials at the nuclei of atoms and molecules, in: “The Theory of Molecular Structure and Bonding,” R. Pauncz and E. A. Halevi, eds., Israel J. Chem. (special issue) 19:224 (1980).Google Scholar
  21. 11.
    See, for example, E. U. Condon, Basic electromagnetic phenomena, in: “Handbook of Physics,” E. U. Condon and H. Odishaw, eds., McGraw-Hill Book Co., New York (1958) Part 4, Ch. 1.Google Scholar
  22. 12.
    P. Politzer and R. G. Parr, Some new energy formulas for atoms and molecules, J. Chem. Phys. 61: 4258 (1974).CrossRefGoogle Scholar
  23. 13.
    N. H. March, The Thomas-Fermi approximation in quantum mechanics, Adv. Phys. 6: 1 (1957);Google Scholar
  24. H. A. Bethe and R. W. Jackiw, “Intermediate Quantum Mechanics,” 2nd ed., W. A. Benjamin, Inc., New York (1968) Ch. 5; J. Goodisman, Modified quantum-statistical calculations for atomic electron densities, Phys. Rev. A2:1193 (1970);Google Scholar
  25. J. Goodisman, Energy levels in modified quantum statistical potentials, Theoret. Chim. Acta 24: 1 (1972).CrossRefGoogle Scholar
  26. 14.
    E. A. Milne, The total energy of binding of a heavy atom, Proc. Cambridge Philos. Soc. 23: 794 (1927).Google Scholar
  27. 15.
    S. Fraga, Non-relativistic self-consistent-field theory. II., Theoret. Chim. Acta 2: 406 (1964).CrossRefGoogle Scholar
  28. 16.
    P. Politzer, Electrostatic potential - electronic density relationships in atoms, J. Chem. Phys. 72: 3027 (1980).CrossRefGoogle Scholar
  29. 17.
    E. Clementi, “Tables of Atomic Functions,” IBM Corp., San Jose, CA (1965).Google Scholar
  30. 18.
    P. Politzer and R. G. Parr, Separation of core and valence regions in atoms, J. Chem. Phys. 64: 4634 (1976).CrossRefGoogle Scholar
  31. 19.
    S. Fliszar and H. Henry, Charge distributions and chemical effects. XVI. Valence electron energies in atoms and ions, J. Chem. Phys. 67: 2345 (1977);CrossRefGoogle Scholar
  32. S. Fliszar, Charge distributions and chemical effects. XVII. Valence region energies and electronegativity of atoms and charged species, J. Chem. Phys. 69: 237 (1978).CrossRefGoogle Scholar
  33. 20.
    W.-P. Wang and R. G. Parr, Statistical atomic models with piecewise exponentially decaying electron densities, Phys. Rev. A16: 891 (1977).Google Scholar
  34. 21.
    P. Politzer, J. Reuther and G. T. Kasten, Core regions in molecules, J. Chem. Phys. 67: 2385 (1977).CrossRefGoogle Scholar
  35. 22.
    R. J. Boyd, Electron density partitioning in atoms, J. Chem. Phys. 66: 356 (1977).CrossRefGoogle Scholar
  36. 23.
    P. Politzer, Electrostatic potential - electronic density relationships in atoms. II., J. Chem. Phys. 73: in press.Google Scholar
  37. 24.
    P. Politzer, Some approximate energy relationships for ground and excited states of diatomic molecules and molecular-ions, J. Chem. Phys. 69: 491 (1978).CrossRefGoogle Scholar
  38. 25.
    P. Politzer, An improved approximate energy formula for molecules, J. Chem. Phys. 70: 1067 (1979).CrossRefGoogle Scholar
  39. 26.
    T. Anno, Finer examination of Politzer’s improved approximate energy formula for molecules, J. Chem. Phys. 72: 782 (1980);CrossRefGoogle Scholar
  40. T. Anno, paper presented at 3rd International Congress of Quantum Chemistry, Kyoto, Japan, Oct. 25 - Nov. 3, 1979.Google Scholar
  41. 27.
    S. Fliszar and D. Salahub, Charge distributions and chemical effects. XVIII. On the relationship between total valence-electron energies and nuclear-electronic interaction energies in atoms and ions, J. Chem. Phys. 69: 3321 (1978).CrossRefGoogle Scholar
  42. 28.
    S. Fliszar, Charge distributions and chemical effects. XXI. A new energy formula for molecules, J. Chem. Phys. 71:700 (1979); S. Fliszar and M.-T. Beraldin, Charge distributions and chemical effects. XXII. On the partitioning of molecular energies and the relationships between energy components, J. Chem. Phys. 72: 1013 (1980).CrossRefGoogle Scholar
  43. 29.
    K. Ruedenberg, An approximate relation between orbital SCF energies and total SCF energy in molecules, J. Chem. Phys. 66: 375 (1977).Google Scholar
  44. 30.
    L. J. Schaad, B. H. Robinson and B. A. Hess, Jr., The relation between orbital SCF energies and total SCF energies in molecules, J. Chem. Phys. 67: 4616 (1977).CrossRefGoogle Scholar
  45. 31.
    N. H. March, Relation between the total energy and eigenvalue sum for neutral atoms and molecules, J. Chem. Phys. 67: 4618 (1977).CrossRefGoogle Scholar
  46. 32.
    S.-T. Wu, The relation between orbital SCF energies and total SCF energies in positive atomic ions, J. Chem. Phys. 69: 2934 (1978).CrossRefGoogle Scholar
  47. 33.
    M. Kertesz, J. Keller and A. Azman, On Hartree-Fock orbital and total energies in extended systems, J. Chem. Phys. 69: 2937 (1978).CrossRefGoogle Scholar
  48. 34.
    T. Anno and Y. Sakai, A remark on the relation between HartreeFock orbital energies and the Hartree-Fock total energy in molecules, J. Chem. Phys. 67: 4771 (1977).CrossRefGoogle Scholar
  49. 35.
    T. Anno, The Politzer and the Ruedenberg type energy relations for molecules in their nonequilibrium configurations, J. Chem. Phys. 69: 5213 (1978).CrossRefGoogle Scholar
  50. 36.
    G. I. Plindov and S. K. Pogrebnya, On the relation between the total SCF energy and the eigenvalue sum for atoms and molecules, Chem. Phys. Lett. 59: 265 (1978).CrossRefGoogle Scholar
  51. 37.
    C. V. R. Rao and K. D. Sen, The total Hartree-Fock SCF energy in atoms and ions, J. Chem. Phys. 70: 586 (1979).CrossRefGoogle Scholar
  52. 38.
    D. B. Boyd, Approximate relations between orbital SCF energies and total SCF energies in molecules, J. Chem. Phys. 67: 1787 (1977).Google Scholar
  53. 39.
    A. B. Sannigrahi, B. R. De and B. Guha Niyogi, On the relation between orbital SCF energies and total SCF energy in molecules, J. Chem. Phys. 68: 784 (1978).CrossRefGoogle Scholar
  54. 40.
    P. Politzer, K. C. Daiker and P. Trefonas III, A proposed formula for the energy of an atom in a molecule, J. Chem. Phys. 70: 4400 (1979).CrossRefGoogle Scholar
  55. 41.
    M. Levy, Variational energy functionals involving one-electron operators, J. Chem. Phys. 67:724 (1977); M. Levy, An energy-density equation for isoelectronic changes in atoms, J. Chem. Phys. 68:5298 (1978); M. Levy, On approximate energy differences from average electron densities, J. Chem. Phys. 70:1573 (. 1979 ).Google Scholar
  56. 42.
    M. Levy and Y. Tal, Atomic binding energies from fundamental theorems involving the electron density, Sr-1, and the Z-1 perturbation expansion, J. Chem. Phys. 72: 3416 (1980).CrossRefGoogle Scholar
  57. 43.
    L. C. Snyder and H. Basch, ‘Molecular Wave Functions and Properties,“ Wiley-Interscience, New York (1972).Google Scholar
  58. 44.
    R. G. Parr, R. A. Donnelly, M. Levy and W. E. Palke, Electronegativity: The density functional viewpoint, J. Chem. Phys. 68:3801 (1978); R. A. Donnelly and R. G. Parr, Elementary properties of an energy functional of the first-order reduced density matrix, J. Chem. Phys. 69: 4431 (1978).Google Scholar
  59. 45.
    E. P. Gyftopoulos and G. N. Hatsopoulos, Quantum-thermodynamic definition of electronegativity, Proc. Nat. Acad. Sci. U.S.A. 60: 786 (1968).CrossRefGoogle Scholar
  60. 46.
    P. Politzer and H. Weinstein, Some relations between electronic distribution and electronegativity, J. Chem. Phys. 71: 4218 (1979).CrossRefGoogle Scholar
  61. 47.
    See also J. Hinze, M. A. Whitehead and H. H. Jaffe, Electronegativity. II. Bond and orbital electronegativities, J. Am. Chem. Soc. 85: 148 (1963);CrossRefGoogle Scholar
  62. G. Klopman, A semiempïrical treatment of molecular structures. I. Electronegativity and atomic terms, J. Am. Chem. Soc. 86: 1463 (1964);CrossRefGoogle Scholar
  63. N. C. Baird, J. M. Sichel and M. A. Whitehead, A molecular orbital approach to electronegativity equalization, Theoret. Chim. Acta 11: 38 (1968).CrossRefGoogle Scholar
  64. 48.
    R. T. Sanderson, An interpretation of bond lengths in alkali halide gas molecules, J. Am. Chem. Soc. 74: 272 (1952);CrossRefGoogle Scholar
  65. R. T. Sanderson, Partial charges on atoms in organic compounds, Science 121: 207 (1955);CrossRefGoogle Scholar
  66. R. T. Sanderson, “Chemical Bonds and Bond Energy,” Academic Press, New York (1971).Google Scholar
  67. 49.
    H. Basch, On the interpretation of K-shell electron binding energy chemical shifts in molecules, Chem. Phys. Lett. 5: 337 (1970);CrossRefGoogle Scholar
  68. M. E. Schwartz, Correlation of is binding energy with the average quantum mechanical potential at a nucleus, Chem. Phys. Lett. 6: 631 (1970).CrossRefGoogle Scholar
  69. 50.
    N. F. Ramsey, Magnetic shielding of nuclei in molecules, Phys. Rev. 78: 699 (1950);CrossRefGoogle Scholar
  70. T. D. Gierke and W. H. Flygare, An empirical evaluation of the individual elements in the nuclear diamagnetic shielding tensor by the atom dipole method, J. Am. Chem. Soc. 94: 7277 (1972).CrossRefGoogle Scholar
  71. 51.
    M. Barber, P. Swift, D. Cunningham and M. J. Frazer, Correlation between core level shifts in electron spectroscopy and chemical shifts in Mossbauer spectroscopy, J. Chem. Soc., Chem. Commun. 1338 (1970);Google Scholar
  72. I. Adams, J. M. Thomas, G. M. Bancroft, K. D. Butler and M. Barber, Correlation between core-electron binding energies and Mossbauer chemical isomer shifts for inorganic complexes containing iron(II) low spin, J. Chem. Soc., Chem. Commun. 751 (1972);Google Scholar
  73. W. E. Swartz, Jr., P. H. Watts, Jr., E. R. Lippincott, J. C. Watts and J. E. Huheey, X-ray photoelectron spectroscopy of tin. I. Hexahalostannates, Inorg. Chem. 11: 2632 (1972);Google Scholar
  74. L. Y. Johansson, R. Larsson, J. Blomquïst, C. Cederstrom, S. Grapengiesser, U. Helgeson, L. C. Moberg and M. Sundbom, X-ray photoelectron and Mossbauer spectroscopy on a variety of iron compounds, Chem. Phys. Lett. 24: 508 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Peter Politzer
    • 1
  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA

Personalised recommendations