Skip to main content

Transition Metal Ions as Probes of the Molecular Electrostatic Potential: The Case for the Nucleic Acid Bases Cytosine and Guanine

  • Chapter
Chemical Applications of Atomic and Molecular Electrostatic Potentials
  • 241 Accesses

Abstract

It has long been recognized that the point of attack of diverse electrophiles (e.g., protons, alkyl cations, alkali metal and alkaline earth cations, and transition metal ions in various coordination geometries and formal oxidation states) on a base is largely dependent on the global potential created in the space surrounding the base by the nuclear charges and the molecular electronic distribution. The electrostatic (Coulombic) part of the total interaction energy of an electrophile and a base is derivable from a knowledge of the distribution of the charge on the electrophile and the molecular electrostatic potential of the base. At moderate-to-large separation distances between the electrophile and the base, the electrostatic component of the total energy of interaction is expected to dominate and possibly to be determinative of the site of attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bonaccorsi, A. Pullman, E. Scrocco and J. Tomasi, The molecular electrostatic potentials for the nucleic acid bases: Adenine, Thymine and Cytosine, Theoret. Chim. Acta 24: 51 (1972).

    Article  CAS  Google Scholar 

  2. A. Pullman and A. M. Armbruster, On the affinity of cytosine for electrophiles, Theoret. Chim. Acta 45: 249 (1977).

    Article  CAS  Google Scholar 

  3. M. Sundaralingam and J. A. Carrabine, Stereochemistry of Nucleic acids and their constituents. XIX. Copper binding sites and mechanism of G-C selective denaturation of DNA. Crystal and molecular structure of guanine-copper(.II) chloride and cytosine-copper(II) chloride complexes“ J. Mol. Biol. 61: 287 (1971).

    Article  CAS  Google Scholar 

  4. T. J. Kistenmacher, D. J. Szalda and L. G. Marzilli, j(Glycylglycinato)(cytosine)copper(II)]. A model for enzyme-metalnucleic acid ternary complexes, Acta Cryst. B31: 2416 (1975).

    Article  Google Scholar 

  5. M. Authier-Martin and A. L. Beauchamp, Crystal structure of a dimeric 1-methylcytosine mercuric chloride complex, Can. J. Chem. 55: 1213 (1977).

    CAS  Google Scholar 

  6. J. K. Shiba and R. Bau, Crystal and molecular structure of the monoclinic form of ICd(5’-CMP)(H20)111, Inorg. Chem. 17: 3484 (1978).

    CAS  Google Scholar 

  7. R. Melanson and F. D. Rochon, Crystal and molecular structure of trans-dichloro(dimethylsulfoxide)(cytidine)platinum(II), Inorg. Chem. 17: 679 (1978).

    CAS  Google Scholar 

  8. C. J. L. Lock, R. A. Speranzini and J. Powell, Heavy transition metal complexes of biologically important molecules. I. The crystal and molecular structure of trans-dichlorolbis(isopropyl)sulfoxide-S](1-methylcytosine-N)platinum(II), Can. J. Chem. 54: 53 (1976).

    CAS  Google Scholar 

  9. E. Sinn, C. M. Flynn and R. B. Martin, Crystal and molecular structure of dichlorobis(1-methylcytosine)palladium(II), Inorg. Chem. 16: 2403 (1977).

    CAS  Google Scholar 

  10. K. Aoki, X-ray crystal structure of the 1:1 manganese-cytidine 5’-phosphate complex: Metal bonding to both 0(2) of the base and phosphate, J. Chem. Soc., Chem. Commun. 1976: 748.

    Google Scholar 

  11. L. G. Marzilli, T. J. Kistenmacher and G. L. Eichhorn, Structural principles of metal ion-nucleotide and metal ion-nucleic acid interactions, in: “Nucleic Acid-Metal Interactions,” T. G. Spiro, ed., John Wiley (1980), Chapter 5.

    Google Scholar 

  12. a) L. G. Marzilli, T. J. Kistenmacher and M. Rossi, An extension of the role of 0(2) of cytosine residues in the binding of metal ions. Synthesis and structure of an unusual polymeric Ag(I) complex of 1-methylcytosine, J. Am. Chem. Soc. 99:2797 (1977); (b) T. J. Kistenmacher, M. Rossi and L. G. Marzilli, Crystal and molecular structure of (nitrato)(1-methylcytosine) silver(I), an unusual cross-linked polymer containing a heavy metal and a modified nucleic acid constituent, Inorg. Chem. 18: 240 (1979).

    Google Scholar 

  13. R. Bonaccorsi, E. Scrocco, J. Tomasi and A. Pullman, Ab initio molecular electrostatic potentials. Guanine compared to Adenine, Theoret. Chim. Acta 36: 339 (1975).

    Article  Google Scholar 

  14. K. Aoki, Crystallographic studies of interactions between nucleotides and metal ions. II. The crystal and molecular structure of the 1:1 complex of cadmium(II) with Guanosine 5’-phosphate, Acta Cryst. B32: 1454 (1976).

    Article  Google Scholar 

  15. L. G. Marzilli and T. J. Kistenmacher, Stereoselectivity in the binding of transition metal chelate complexes to nucleic acid constituents: Bonding and nonbonding effects, Acct. Chem. Res. 10: 146 (1977).

    Article  CAS  Google Scholar 

  16. R. W. Gellert and R. Bau, The structure of the ‘platinum(ethylenediamine)(guanosine)2]2+ cation, J. Am. Chem. Soc. 97: 7379 (1975).

    Article  CAS  Google Scholar 

  17. D. M. L. Goodgame, I. Jeeves, F. L. Phillips and A. C. Skapski, Possible mode of action of anti-tumor platinum drugs: X-ray evidence for cis binding by the platinum of two inosine 5’monophosphate molecules via the N(7) positions, Biochim. Biophys. Acta 378: 153 (1975).

    Article  CAS  Google Scholar 

  18. R. E. Cramer and P. L. Dahlstrom, “The crystal and molecular structure of cis-[Pt(NH3)2(Guo)2]C13/2(C104)1/2.7H20, J. Clin. Hematol. Oncol. 7: 330 (1977).

    CAS  Google Scholar 

  19. R. Bau, R. W. Gellert, S. M. Lehovec and S. Louie, “Crystallographic studies on platinum-nucleoside and platinum-nucleotide complexes, J. Clin. Hematol. Oncol. 7: 51 (1977).

    CAS  Google Scholar 

  20. T. J. Kistenmacher, C. C. Chiang, P. Chalilpoyil and L. G. Marzilli, On the non-stoichiometry of the binding of Pt(II) anti-neoplastic agents to inosine 5’-monophosphate, Biochem. Biophys. Res. Commun. 84: 70 (1978).

    Article  CAS  Google Scholar 

  21. L. G. Marzilli, P. Chalilpoyil, C. C. Chiang and T. J. Kistenmacher, Platinum(I’I) anti-tumor agents. A new class of intra-strand crosslinking models exhibiting significant intracomplex base-base interactions, J. Am. Chem. Soc. 102: 2480 (1980).

    Article  CAS  Google Scholar 

  22. R. Bau and R. W. Gellert, Structure of IPt(en)(5’-GMP)2]2anion, Biochimie 60: 1040 (1978).

    Article  Google Scholar 

  23. T. J. Kistenmacher, C. C. Chiang, P. Chalilpoyil and L. G. Marzilli, Structural properties of a nearly stoichiometric diammineplatinum(II) complex with inosine 5’-monophosphate, J. Am. Chem. Soc. 101: 1143 (1979).

    Article  CAS  Google Scholar 

  24. T. Sorrell, L. G. Marzilli and T. J. Kistenmacher, Preparation and stereochemistry of an unusual copper(II)-purine complex, axial and equatorial purine ligands in the square-pyramidal complex bis(theophyllinato)(diethylenetriamine)copper(II) dihydrate, J. Am. Chem. Soc. 98: 2181 (1976).

    Article  CAS  Google Scholar 

  25. D. J. Szalda, T. J. Kistenmacher and L. G. Marzilli, Observation of a direct interaction between the carbonyl oxygen, 0(6), of a N(7)-bonded 6-oxopurine and a metal center. Preparation and crystal and molecular structure of (N-3,4-benzosalicylidene-N’,N’-dimethylethylenediamine)(theophyllinato)copper(II) monohydrate, J. Am. Chem. Soc. 98: 8371 (1976).

    Google Scholar 

  26. H. I. Heitner and S. J. Lippard, Synthesis and molecular structure of bis(6-mercapto-9-benzylpurine)palladium(II)dimethylacetamide, Inorg. Chem. 13: 815 (1974).

    CAS  Google Scholar 

  27. E. Sletten and A. Apeland, Crystallographic studies on metal-nucleotide base complexes. VI. Dichloro(6-thio-9-methylpurine) copper(II) monohydrate, Acta Cryst. B31: 2019 (1975).

    Article  Google Scholar 

  28. M. R. Caira and R. Nassimbeni, Crystal structure of the dimeric 6-mercaptopurine copper(I) chloride complex, Acta Cryst. B31: 1339 (1975).

    Article  Google Scholar 

  29. P. Lavetue, J. Hubert and H. L. Beauchamp, Crystal structure of dichlorobis(6-mercaptopurine)mercury(II), Inorg. Chem. 15: 322 (1976).

    Google Scholar 

  30. J. K. Barton, H. N. Rabinowitz, D. J. Szalda and S. J. Líppard, Synthesis and crystal structure of cis-diammineplatinum apyridone blue, J. Am. Chem. Soc. 99: 2827 (1977).

    Article  CAS  Google Scholar 

  31. J. K. Barton and S. J. Lippard, A crystalline platinum blue: Its molecular structure, chemical reactivity, and possible relevance to the mode of action of antitumor platinum drugs, Ann. N. Y. Acad. Sci. 313: 686 (1978).

    Article  CAS  Google Scholar 

  32. J. K. Barton, D. J. Szalda, H. N. Rabinowitz, J. V. Waszczak and S. J. Lippard, Solid state structure, magnetic susceptibility, and single crystal ESR properties of cis-diammineplatinum a-pyridone blue, J. Am. Chem. Soc. 101: 1434 (1979).

    Article  CAS  Google Scholar 

  33. L. G. Marzillí, K. Wilkowski, C. C. Chiang and T. J. Kistenmacher, Coordination chemistry of 7,9-disubstituted-6oxopurine metal compounds: I. Copper(II) coordination at N(1). The molecular and crystal structure of j(glyclyglycinato) (7,9-dimethylhypoxanthine)copper(II) tetrahydrate, J. Am. Chem. Soc. 101: 7504 (1979).

    Article  Google Scholar 

  34. T. J. Kistenmacher, K. Wilkowski, B. deCastro, C. C. Chiang and L. G. Marzillí, Structures of two N(1)-bound platinum(II)-6oxopurine complexes. Comparisons with complexes derived from platinum(II) anti-tumor agents, Biochem. Biophys. Res. Commun. 91: 1521 (1979).

    Article  CAS  Google Scholar 

  35. T. J. Kistenmacher, B. deCastro, K. Wilkowski and L. G. Marzilli, The molecular structure of the N(1)-bound complex I(diethylenetriamine)(7,9-dimethylguanine)platinum(II)]bis(hexafluorophosphate), to be published.

    Google Scholar 

  36. S. M. Wu and R. Bau, The structure of a platinum(II) complex of cytidine-3’-monophosphate, Biochem. Biophys. Res. Commun. 88: 1435 (1979).

    Article  CAS  Google Scholar 

  37. K. Aoki, The crystal and molecular structure of the polymeric complex of zinc(II) with cytosine 5’-phosphate: Metal binding to both N(3) and phosphate, Biochim. Biophys. Acta 447: 379 (1976).

    Article  CAS  Google Scholar 

  38. L. G. Marzilli, R. C. Stewart, C. P. Van Vuuren, B. deCastro and J. P. Caradonna, Metal ion binding to cytidine in solution. Compelling Raman and carbon-13 nuclear magnetic resonance spectral evidence for coordination to the exocyclic oxygen at position 2, J. Am. Chem. Soc. 100: 3967 (1978).

    Article  CAS  Google Scholar 

  39. L. G. Marzilli, B. deCastro, J. P. Caradonna, R. C. Stewart and C. P. Van Vuuren, Nucleoside complexing. A Raman and 13C NMR spectroscopic study of the binding of hard and soft metal species, J. Am. Chem. Soc. 102: 916 (1980).

    Article  CAS  Google Scholar 

  40. A. Pullman, T. Ebbesen and M. Rholam, Cation binding to bio-molecules. VI. SCF ab initio (pseudopotential) computations on the interaction of Zn2+ with the purine and pyrimidine bases of the nucleic acids, Theoret. Chím. Acta 51: 247 (1979).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kistenmacher, T.J. (1981). Transition Metal Ions as Probes of the Molecular Electrostatic Potential: The Case for the Nucleic Acid Bases Cytosine and Guanine. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics