Transition Metal Ions as Probes of the Molecular Electrostatic Potential: The Case for the Nucleic Acid Bases Cytosine and Guanine

  • Thomas J. Kistenmacher


It has long been recognized that the point of attack of diverse electrophiles (e.g., protons, alkyl cations, alkali metal and alkaline earth cations, and transition metal ions in various coordination geometries and formal oxidation states) on a base is largely dependent on the global potential created in the space surrounding the base by the nuclear charges and the molecular electronic distribution. The electrostatic (Coulombic) part of the total interaction energy of an electrophile and a base is derivable from a knowledge of the distribution of the charge on the electrophile and the molecular electrostatic potential of the base. At moderate-to-large separation distances between the electrophile and the base, the electrostatic component of the total energy of interaction is expected to dominate and possibly to be determinative of the site of attack.


Metal Center Metal Binding Molecular Electrostatic Potential Metal Binding Site Nucleic Acid Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Bonaccorsi, A. Pullman, E. Scrocco and J. Tomasi, The molecular electrostatic potentials for the nucleic acid bases: Adenine, Thymine and Cytosine, Theoret. Chim. Acta 24: 51 (1972).CrossRefGoogle Scholar
  2. 2.
    A. Pullman and A. M. Armbruster, On the affinity of cytosine for electrophiles, Theoret. Chim. Acta 45: 249 (1977).CrossRefGoogle Scholar
  3. 3.
    M. Sundaralingam and J. A. Carrabine, Stereochemistry of Nucleic acids and their constituents. XIX. Copper binding sites and mechanism of G-C selective denaturation of DNA. Crystal and molecular structure of guanine-copper(.II) chloride and cytosine-copper(II) chloride complexes“ J. Mol. Biol. 61: 287 (1971).CrossRefGoogle Scholar
  4. 4.
    T. J. Kistenmacher, D. J. Szalda and L. G. Marzilli, j(Glycylglycinato)(cytosine)copper(II)]. A model for enzyme-metalnucleic acid ternary complexes, Acta Cryst. B31: 2416 (1975).CrossRefGoogle Scholar
  5. 5.
    M. Authier-Martin and A. L. Beauchamp, Crystal structure of a dimeric 1-methylcytosine mercuric chloride complex, Can. J. Chem. 55: 1213 (1977).Google Scholar
  6. 6.
    J. K. Shiba and R. Bau, Crystal and molecular structure of the monoclinic form of ICd(5’-CMP)(H20)111, Inorg. Chem. 17: 3484 (1978).Google Scholar
  7. 7.
    R. Melanson and F. D. Rochon, Crystal and molecular structure of trans-dichloro(dimethylsulfoxide)(cytidine)platinum(II), Inorg. Chem. 17: 679 (1978).Google Scholar
  8. 8.
    C. J. L. Lock, R. A. Speranzini and J. Powell, Heavy transition metal complexes of biologically important molecules. I. The crystal and molecular structure of trans-dichlorolbis(isopropyl)sulfoxide-S](1-methylcytosine-N)platinum(II), Can. J. Chem. 54: 53 (1976).Google Scholar
  9. 9.
    E. Sinn, C. M. Flynn and R. B. Martin, Crystal and molecular structure of dichlorobis(1-methylcytosine)palladium(II), Inorg. Chem. 16: 2403 (1977).Google Scholar
  10. 10.
    K. Aoki, X-ray crystal structure of the 1:1 manganese-cytidine 5’-phosphate complex: Metal bonding to both 0(2) of the base and phosphate, J. Chem. Soc., Chem. Commun. 1976: 748.Google Scholar
  11. 11.
    L. G. Marzilli, T. J. Kistenmacher and G. L. Eichhorn, Structural principles of metal ion-nucleotide and metal ion-nucleic acid interactions, in: “Nucleic Acid-Metal Interactions,” T. G. Spiro, ed., John Wiley (1980), Chapter 5.Google Scholar
  12. 12.
    a) L. G. Marzilli, T. J. Kistenmacher and M. Rossi, An extension of the role of 0(2) of cytosine residues in the binding of metal ions. Synthesis and structure of an unusual polymeric Ag(I) complex of 1-methylcytosine, J. Am. Chem. Soc. 99:2797 (1977); (b) T. J. Kistenmacher, M. Rossi and L. G. Marzilli, Crystal and molecular structure of (nitrato)(1-methylcytosine) silver(I), an unusual cross-linked polymer containing a heavy metal and a modified nucleic acid constituent, Inorg. Chem. 18: 240 (1979).Google Scholar
  13. 13.
    R. Bonaccorsi, E. Scrocco, J. Tomasi and A. Pullman, Ab initio molecular electrostatic potentials. Guanine compared to Adenine, Theoret. Chim. Acta 36: 339 (1975).CrossRefGoogle Scholar
  14. 14.
    K. Aoki, Crystallographic studies of interactions between nucleotides and metal ions. II. The crystal and molecular structure of the 1:1 complex of cadmium(II) with Guanosine 5’-phosphate, Acta Cryst. B32: 1454 (1976).CrossRefGoogle Scholar
  15. 15.
    L. G. Marzilli and T. J. Kistenmacher, Stereoselectivity in the binding of transition metal chelate complexes to nucleic acid constituents: Bonding and nonbonding effects, Acct. Chem. Res. 10: 146 (1977).CrossRefGoogle Scholar
  16. 16.
    R. W. Gellert and R. Bau, The structure of the ‘platinum(ethylenediamine)(guanosine)2]2+ cation, J. Am. Chem. Soc. 97: 7379 (1975).CrossRefGoogle Scholar
  17. 17.
    D. M. L. Goodgame, I. Jeeves, F. L. Phillips and A. C. Skapski, Possible mode of action of anti-tumor platinum drugs: X-ray evidence for cis binding by the platinum of two inosine 5’monophosphate molecules via the N(7) positions, Biochim. Biophys. Acta 378: 153 (1975).CrossRefGoogle Scholar
  18. 18.
    R. E. Cramer and P. L. Dahlstrom, “The crystal and molecular structure of cis-[Pt(NH3)2(Guo)2]C13/2(C104)1/2.7H20, J. Clin. Hematol. Oncol. 7: 330 (1977).Google Scholar
  19. 19.
    R. Bau, R. W. Gellert, S. M. Lehovec and S. Louie, “Crystallographic studies on platinum-nucleoside and platinum-nucleotide complexes, J. Clin. Hematol. Oncol. 7: 51 (1977).Google Scholar
  20. 20.
    T. J. Kistenmacher, C. C. Chiang, P. Chalilpoyil and L. G. Marzilli, On the non-stoichiometry of the binding of Pt(II) anti-neoplastic agents to inosine 5’-monophosphate, Biochem. Biophys. Res. Commun. 84: 70 (1978).CrossRefGoogle Scholar
  21. 21.
    L. G. Marzilli, P. Chalilpoyil, C. C. Chiang and T. J. Kistenmacher, Platinum(I’I) anti-tumor agents. A new class of intra-strand crosslinking models exhibiting significant intracomplex base-base interactions, J. Am. Chem. Soc. 102: 2480 (1980).CrossRefGoogle Scholar
  22. 22.
    R. Bau and R. W. Gellert, Structure of IPt(en)(5’-GMP)2]2anion, Biochimie 60: 1040 (1978).CrossRefGoogle Scholar
  23. 23.
    T. J. Kistenmacher, C. C. Chiang, P. Chalilpoyil and L. G. Marzilli, Structural properties of a nearly stoichiometric diammineplatinum(II) complex with inosine 5’-monophosphate, J. Am. Chem. Soc. 101: 1143 (1979).CrossRefGoogle Scholar
  24. 24.
    T. Sorrell, L. G. Marzilli and T. J. Kistenmacher, Preparation and stereochemistry of an unusual copper(II)-purine complex, axial and equatorial purine ligands in the square-pyramidal complex bis(theophyllinato)(diethylenetriamine)copper(II) dihydrate, J. Am. Chem. Soc. 98: 2181 (1976).CrossRefGoogle Scholar
  25. 25.
    D. J. Szalda, T. J. Kistenmacher and L. G. Marzilli, Observation of a direct interaction between the carbonyl oxygen, 0(6), of a N(7)-bonded 6-oxopurine and a metal center. Preparation and crystal and molecular structure of (N-3,4-benzosalicylidene-N’,N’-dimethylethylenediamine)(theophyllinato)copper(II) monohydrate, J. Am. Chem. Soc. 98: 8371 (1976).Google Scholar
  26. 26.
    H. I. Heitner and S. J. Lippard, Synthesis and molecular structure of bis(6-mercapto-9-benzylpurine)palladium(II)dimethylacetamide, Inorg. Chem. 13: 815 (1974).Google Scholar
  27. 27.
    E. Sletten and A. Apeland, Crystallographic studies on metal-nucleotide base complexes. VI. Dichloro(6-thio-9-methylpurine) copper(II) monohydrate, Acta Cryst. B31: 2019 (1975).CrossRefGoogle Scholar
  28. 28.
    M. R. Caira and R. Nassimbeni, Crystal structure of the dimeric 6-mercaptopurine copper(I) chloride complex, Acta Cryst. B31: 1339 (1975).CrossRefGoogle Scholar
  29. 29.
    P. Lavetue, J. Hubert and H. L. Beauchamp, Crystal structure of dichlorobis(6-mercaptopurine)mercury(II), Inorg. Chem. 15: 322 (1976).Google Scholar
  30. 30.
    J. K. Barton, H. N. Rabinowitz, D. J. Szalda and S. J. Líppard, Synthesis and crystal structure of cis-diammineplatinum apyridone blue, J. Am. Chem. Soc. 99: 2827 (1977).CrossRefGoogle Scholar
  31. 31.
    J. K. Barton and S. J. Lippard, A crystalline platinum blue: Its molecular structure, chemical reactivity, and possible relevance to the mode of action of antitumor platinum drugs, Ann. N. Y. Acad. Sci. 313: 686 (1978).CrossRefGoogle Scholar
  32. 32.
    J. K. Barton, D. J. Szalda, H. N. Rabinowitz, J. V. Waszczak and S. J. Lippard, Solid state structure, magnetic susceptibility, and single crystal ESR properties of cis-diammineplatinum a-pyridone blue, J. Am. Chem. Soc. 101: 1434 (1979).CrossRefGoogle Scholar
  33. 33.
    L. G. Marzillí, K. Wilkowski, C. C. Chiang and T. J. Kistenmacher, Coordination chemistry of 7,9-disubstituted-6oxopurine metal compounds: I. Copper(II) coordination at N(1). The molecular and crystal structure of j(glyclyglycinato) (7,9-dimethylhypoxanthine)copper(II) tetrahydrate, J. Am. Chem. Soc. 101: 7504 (1979).CrossRefGoogle Scholar
  34. 34.
    T. J. Kistenmacher, K. Wilkowski, B. deCastro, C. C. Chiang and L. G. Marzillí, Structures of two N(1)-bound platinum(II)-6oxopurine complexes. Comparisons with complexes derived from platinum(II) anti-tumor agents, Biochem. Biophys. Res. Commun. 91: 1521 (1979).CrossRefGoogle Scholar
  35. 35.
    T. J. Kistenmacher, B. deCastro, K. Wilkowski and L. G. Marzilli, The molecular structure of the N(1)-bound complex I(diethylenetriamine)(7,9-dimethylguanine)platinum(II)]bis(hexafluorophosphate), to be published.Google Scholar
  36. 36.
    S. M. Wu and R. Bau, The structure of a platinum(II) complex of cytidine-3’-monophosphate, Biochem. Biophys. Res. Commun. 88: 1435 (1979).CrossRefGoogle Scholar
  37. 37.
    K. Aoki, The crystal and molecular structure of the polymeric complex of zinc(II) with cytosine 5’-phosphate: Metal binding to both N(3) and phosphate, Biochim. Biophys. Acta 447: 379 (1976).CrossRefGoogle Scholar
  38. 38.
    L. G. Marzilli, R. C. Stewart, C. P. Van Vuuren, B. deCastro and J. P. Caradonna, Metal ion binding to cytidine in solution. Compelling Raman and carbon-13 nuclear magnetic resonance spectral evidence for coordination to the exocyclic oxygen at position 2, J. Am. Chem. Soc. 100: 3967 (1978).CrossRefGoogle Scholar
  39. 39.
    L. G. Marzilli, B. deCastro, J. P. Caradonna, R. C. Stewart and C. P. Van Vuuren, Nucleoside complexing. A Raman and 13C NMR spectroscopic study of the binding of hard and soft metal species, J. Am. Chem. Soc. 102: 916 (1980).CrossRefGoogle Scholar
  40. 40.
    A. Pullman, T. Ebbesen and M. Rholam, Cation binding to bio-molecules. VI. SCF ab initio (pseudopotential) computations on the interaction of Zn2+ with the purine and pyrimidine bases of the nucleic acids, Theoret. Chím. Acta 51: 247 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Thomas J. Kistenmacher
    • 1
  1. 1.Department of ChemistryThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations