Skip to main content

Abstract

In the past decade experimental determination of the electron distribution in crystals has become increasingly accepted as a technique which provides detailed information against which theoretical results may be calibrated. For small molecules such as oxalic acid and formamide almost quantitative agreement with extended basis set SCF calculations has been obtained, with small remaining discrepancies being attributed to intermolecular interaction effects on the electron density and also to the neglect of correlation in the calculation.1,3

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. D. Stevens, J. Rys and P. Coppens, Quantitative comparison of theoretical calculations with the experimentally determined electron density distribution of formamide, J. Am. Chem. Soc. 100: 2324 (1978).

    Article  CAS  Google Scholar 

  2. E. D. Stevens and P. Coppens, Experimental electron density distributions of hydrogen bonds. High-resolution study of a-oxalic acid dihydrate at 100 K. Acta Cryst. B 36: 1864 (1980).

    Article  Google Scholar 

  3. E. D. Stevens, Comparison of experimental and theoretical density distributions of oxalic acid dihydrate. Acta Cryst. B 36: 1876 (1980).

    Article  Google Scholar 

  4. P. Coppens and T. N. Guru Row, X-ray diffraction measurement of net atomic and molecular charges, Ann. New York Acad. Sci. 313: 214 (1978).

    Article  Google Scholar 

  5. F. L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theoret. Chim. Acta 44: 129 (1977).

    Article  CAS  Google Scholar 

  6. G. Moss and P. Coppens, Space partitioning and the effects of molecular proximity on electrostatic moments of the crystalline formamide molecule, Chem. Phys. Lett., in press.

    Google Scholar 

  7. A. D. Buckingham, Molecular quadrupole moments, Quart. Rev. 13: 183 (1959).

    Google Scholar 

  8. J. O. Hirshfeld’er, C. F. Curtiss and R. Bird, “Molecular Theory of Gases and Liquids,” Wiley, New York (1963).

    Google Scholar 

  9. H. Margenau and N. R. Kestner, “Theory of Intermolecular Forces,” Pergamon Press, New York (1971).

    Google Scholar 

  10. J. W. Perram and P. J. Stiles, On the application of ellipsoidal harmonics to potential problems in molecular electrostatics and magnetostatics, Proc. R. Soc. Lond. A349: 125 (1976).

    Article  CAS  Google Scholar 

  11. A. Pullman, Molecular electrostatic potentials, in: “The Jerusalem Symposia on Quantum Chemistry and Biochemistry,” E. Bergmann and B. Pullman, eds., Reidel Publishing Co., Dordrecht, Holland (1975), p.

    Google Scholar 

  12. A. Pullman and D. Perahia, Hydration scheme of uracil and cytosine. A comparison between electrostatic and complete supermolecule computations, Theoret. Chim. Acta 48: 29 (1978).

    Article  CAS  Google Scholar 

  13. R. Bonaccorsi, E. Scrocco and J. Tomasi, Group contributions to the electrostatic molecular potential, J. Am. Chem. Soc. 98: 4049 (1976).

    Article  Google Scholar 

  14. R. Bonaccorsi, E. Scrocco and J. Tomasi, An approximate expression of the electrostatic molecular potential in terms of completely transferable group contributions, J. Am. Chem. Soc. 99: 4546 (1977).

    Article  Google Scholar 

  15. G. Moss and D. Feil, Electrostatic molecular interaction from X-ray diffraction data. I. Development of the method; test on pyrazine, Acta Cryst., submitted for publication.

    Google Scholar 

  16. P. Coppens, G. Moss and N. K. Hansen, Derivation of molecular properties by charge density integration, in: “Crystallographic Computing, Proceedings of the 1980 International Winter School on Crystallographic Computing, Bangalore, India,” K. Venkatesan and S. Ramaseshan, eds., to be published.

    Google Scholar 

  17. E. F. Bertaut, Electrostatic potentials, fields and field gradients, J. Phys. Chem. Solids, 39: 97 (1978).

    Article  CAS  Google Scholar 

  18. E. F. Bertaut, The equivalent charge concept and its application to the electrostatic energy of charges and multipoles, J. Phys. 39: 1331 (1978).

    Article  CAS  Google Scholar 

  19. R. F. Stewart, On the mapping of electrostatic properties from Bragg diffraction data, Chem. Phys. Lett. 65: 335 (1979).

    Article  CAS  Google Scholar 

  20. G. J. H. van Ness and F. van Bolhuis, Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. II. Single-crystal X-ray structure determination of acetylene at 141 K, Acta Cryst. B35: 2580 (1979).

    Article  Google Scholar 

  21. E. D. Stevens, Low-temperature experimental electron density distribution of formamide, Acta Cryst. B34: 544 (1978).

    Article  Google Scholar 

  22. R. Bonaccorsi, A. Pullman, E. Scrocco and J. Tomasi, N- versus 0-proton affinities of the amide group: Ab initio electrostatic molecular potentials, Chem. Phys. Lett. 12: 622 (1272).

    Article  Google Scholar 

  23. F. Baert and L. Devos, X-ray and neutron diffraction study of the electron density in pyridiniumdicyanomethylide, to be published.

    Google Scholar 

  24. E. D. Stevens, P. Coppens, R. Feld and M. S. Lehmann, Electron density in the water molecule in a-oxalic acid dihydrate and the nature of short hydrogen bonds, Chem. Phys. Lett. 67: 541 (1979).

    Article  CAS  Google Scholar 

  25. L. C. Snyder and H. Basch, “Molecular Wave Functions and Properties: Tabulated from SCF Calculations in a Gaussian Basis Set,” Wiley, New York (1972).

    Google Scholar 

  26. W. J. Dulmage and W. N. Lipscomb, The crystal structures of hydrogen cyanide, HCN, Acta Cryst. 4: 330 (1951).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Moss, G., Coppens, P. (1981). Pseudomolecular Electrostatic Potentials From X-Ray Diffraction Data. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics