Pseudomolecular Electrostatic Potentials From X-Ray Diffraction Data

  • Grant Moss
  • Philip Coppens


In the past decade experimental determination of the electron distribution in crystals has become increasingly accepted as a technique which provides detailed information against which theoretical results may be calibrated. For small molecules such as oxalic acid and formamide almost quantitative agreement with extended basis set SCF calculations has been obtained, with small remaining discrepancies being attributed to intermolecular interaction effects on the electron density and also to the neglect of correlation in the calculation.1,3


Electrostatic Potential Molecular Electrostatic Potential Molecular Plane Hydrogen Cyanide Molecular Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. D. Stevens, J. Rys and P. Coppens, Quantitative comparison of theoretical calculations with the experimentally determined electron density distribution of formamide, J. Am. Chem. Soc. 100: 2324 (1978).CrossRefGoogle Scholar
  2. 2.
    E. D. Stevens and P. Coppens, Experimental electron density distributions of hydrogen bonds. High-resolution study of a-oxalic acid dihydrate at 100 K. Acta Cryst. B 36: 1864 (1980).CrossRefGoogle Scholar
  3. 3.
    E. D. Stevens, Comparison of experimental and theoretical density distributions of oxalic acid dihydrate. Acta Cryst. B 36: 1876 (1980).CrossRefGoogle Scholar
  4. 4.
    P. Coppens and T. N. Guru Row, X-ray diffraction measurement of net atomic and molecular charges, Ann. New York Acad. Sci. 313: 214 (1978).CrossRefGoogle Scholar
  5. 5.
    F. L. Hirshfeld, Bonded-atom fragments for describing molecular charge densities, Theoret. Chim. Acta 44: 129 (1977).CrossRefGoogle Scholar
  6. 6.
    G. Moss and P. Coppens, Space partitioning and the effects of molecular proximity on electrostatic moments of the crystalline formamide molecule, Chem. Phys. Lett., in press.Google Scholar
  7. 7.
    A. D. Buckingham, Molecular quadrupole moments, Quart. Rev. 13: 183 (1959).Google Scholar
  8. 8.
    J. O. Hirshfeld’er, C. F. Curtiss and R. Bird, “Molecular Theory of Gases and Liquids,” Wiley, New York (1963).Google Scholar
  9. 9.
    H. Margenau and N. R. Kestner, “Theory of Intermolecular Forces,” Pergamon Press, New York (1971).Google Scholar
  10. 10.
    J. W. Perram and P. J. Stiles, On the application of ellipsoidal harmonics to potential problems in molecular electrostatics and magnetostatics, Proc. R. Soc. Lond. A349: 125 (1976).CrossRefGoogle Scholar
  11. 11.
    A. Pullman, Molecular electrostatic potentials, in: “The Jerusalem Symposia on Quantum Chemistry and Biochemistry,” E. Bergmann and B. Pullman, eds., Reidel Publishing Co., Dordrecht, Holland (1975), p.Google Scholar
  12. 12.
    A. Pullman and D. Perahia, Hydration scheme of uracil and cytosine. A comparison between electrostatic and complete supermolecule computations, Theoret. Chim. Acta 48: 29 (1978).CrossRefGoogle Scholar
  13. 13.
    R. Bonaccorsi, E. Scrocco and J. Tomasi, Group contributions to the electrostatic molecular potential, J. Am. Chem. Soc. 98: 4049 (1976).CrossRefGoogle Scholar
  14. 14.
    R. Bonaccorsi, E. Scrocco and J. Tomasi, An approximate expression of the electrostatic molecular potential in terms of completely transferable group contributions, J. Am. Chem. Soc. 99: 4546 (1977).CrossRefGoogle Scholar
  15. 15.
    G. Moss and D. Feil, Electrostatic molecular interaction from X-ray diffraction data. I. Development of the method; test on pyrazine, Acta Cryst., submitted for publication.Google Scholar
  16. 16.
    P. Coppens, G. Moss and N. K. Hansen, Derivation of molecular properties by charge density integration, in: “Crystallographic Computing, Proceedings of the 1980 International Winter School on Crystallographic Computing, Bangalore, India,” K. Venkatesan and S. Ramaseshan, eds., to be published.Google Scholar
  17. 17.
    E. F. Bertaut, Electrostatic potentials, fields and field gradients, J. Phys. Chem. Solids, 39: 97 (1978).CrossRefGoogle Scholar
  18. 18.
    E. F. Bertaut, The equivalent charge concept and its application to the electrostatic energy of charges and multipoles, J. Phys. 39: 1331 (1978).CrossRefGoogle Scholar
  19. 19.
    R. F. Stewart, On the mapping of electrostatic properties from Bragg diffraction data, Chem. Phys. Lett. 65: 335 (1979).CrossRefGoogle Scholar
  20. 20.
    G. J. H. van Ness and F. van Bolhuis, Single-crystal structures and electron density distributions of ethane, ethylene and acetylene. II. Single-crystal X-ray structure determination of acetylene at 141 K, Acta Cryst. B35: 2580 (1979).CrossRefGoogle Scholar
  21. 21.
    E. D. Stevens, Low-temperature experimental electron density distribution of formamide, Acta Cryst. B34: 544 (1978).CrossRefGoogle Scholar
  22. 22.
    R. Bonaccorsi, A. Pullman, E. Scrocco and J. Tomasi, N- versus 0-proton affinities of the amide group: Ab initio electrostatic molecular potentials, Chem. Phys. Lett. 12: 622 (1272).CrossRefGoogle Scholar
  23. 23.
    F. Baert and L. Devos, X-ray and neutron diffraction study of the electron density in pyridiniumdicyanomethylide, to be published.Google Scholar
  24. 24.
    E. D. Stevens, P. Coppens, R. Feld and M. S. Lehmann, Electron density in the water molecule in a-oxalic acid dihydrate and the nature of short hydrogen bonds, Chem. Phys. Lett. 67: 541 (1979).CrossRefGoogle Scholar
  25. 25.
    L. C. Snyder and H. Basch, “Molecular Wave Functions and Properties: Tabulated from SCF Calculations in a Gaussian Basis Set,” Wiley, New York (1972).Google Scholar
  26. 26.
    W. J. Dulmage and W. N. Lipscomb, The crystal structures of hydrogen cyanide, HCN, Acta Cryst. 4: 330 (1951).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Grant Moss
    • 1
  • Philip Coppens
    • 1
  1. 1.Chemistry DepartmentState University of New York at BuffaloBuffaloUSA

Personalised recommendations