Skip to main content

Ectrostatic Potentials in Crystals

  • Chapter

Abstract

In an X-ray diffraction experiment, the integrated Bragg intensities can be reduced to structure factor amplitudes, \(\left| {{F_{\vec H}}} \right|\), which may be accurate to a few percent. Data reduction models include deviations from kinematic scattering conditions (extinction models), inelastic scattering due to phonons in the crystal (thermal diffuse scattering) and current density contributions (anomalous scattering). The relative success of the correction terms can be improved on occasion with controlled experimental parameters such as reduced crystal size, reduced temperatures or higher-frequency X-rays. The phases of \(\left| {{F_{\vec H}}} \right|\) are determined exclusively by model calculations and are generally more reliable for centric crystal structures than acentric ones. If the crystallographer has pursued these sundry steps from the measured, scattered X-ray photons to a set of \({F_{\vec H}}\) with success, then these data may be used to map out a crystal structure at atomic resolution. The \({F_{\vec H}}\), in principle, are the Fourier components of the thermal average electron density in the crystallographic unit cell. If, in addition, the mean thermal nuclear distribution is known (as from a neutron diffraction experiment) then the total charge density distribution can be determined to within the resolution of the experiment, which is restricted to the finite size of the Ewald sphere with radius 1/λ where λ is the wavelength of the X-ray.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. F. Stewart and D. Feil, A theoretical study of elastic X-ray scattering, Acta Cryst. A36: 503 (1980).

    Article  Google Scholar 

  2. R. F. Stewart, On the mapping of electrostatic properties from Bragg diffraction data, Chem. Phys. Lett. 65: 335 (1979).

    Article  CAS  Google Scholar 

  3. F. E. Harris, Hartree-Fock studies of electronic structures of crystalline solids, in: “Theoretical Chemistry, Advances and Perspectives,” Vol. 1, H. Eyring and D. Henderson, eds., Academic Press, New York (1975), p. 147.

    Chapter  Google Scholar 

  4. R. F. Stewart, Electron population analysis with rigid pseudo-atoms, Acta Cryst. A32: 565 (1976).

    Article  Google Scholar 

  5. C. K. Johnson, Addition of higher cumulants to the crystallographic structure factor equation: a generalized treatment for thermal-motion effects, Acta Cryst. A25: 187 (1969).

    Article  CAS  Google Scholar 

  6. B. R. A. Nijboer and F. W. De Wette, On the calculation of lattice sums, Physica 23: 309 (1957).

    Article  CAS  Google Scholar 

  7. P. J. Brown, A study of charge density in beryllium, Phil. Mag. 26: 1377 (1972).

    CAS  Google Scholar 

  8. R. F. Stewart, A charge-density study of crystalline beryllium, Acta Cryst. A33: 33 (1977).

    Article  CAS  Google Scholar 

  9. E. Clementi, Tables of atomic functions, Supplement to IBM J. Res. Dev. 9: 2 (1965).

    CAS  Google Scholar 

  10. F. K. Larsen, M. S. Lehmann and M. Merisalo, Mean-square atomic displacement and antisymmetric atomic vibrations in beryllium at room temperature determined from short-wavelength neutron data, Acta Cryst. A36: 159 (1980).

    Google Scholar 

  11. Y. W. Yang and P. Coppens, On the experimental electron distribution in silicon, Solid State Comm. 15: 1555 (1974).

    Article  CAS  Google Scholar 

  12. Y. Le Page and G. Donnay, Refinement of the crystal structure of low-quartz, Acta Cryst. B32: 2456 (1976).

    Article  Google Scholar 

  13. Y. Le Page, private communication (1978).

    Google Scholar 

  14. J. Epstein, Model studies for the analysis of scattered intensities from X-ray and high energy electron diffraction, Ph.D. Thesis, Carnegie-Mellon University (1978).

    Google Scholar 

  15. J. Epstein, J. R. Ruble and B. M. Craven, unpublished (1978).

    Google Scholar 

  16. R. K. McMullan, J. Epstein, J. R. Ruble and D. M. Craven, The crystal structure of imidazole at 103 K by neutron diffraction, Acta Cryst. B35: 688 (1979).

    Article  Google Scholar 

  17. B. M. Craven, P. Benci, J. Epstein, R. O. Fox, R. K. McMullan, J. R. Ruble, R. F. Stewart and H. P. Weber, X-ray and neutron diffraction studies of charge density in small molecules of biological interest, ACA Program and Abstracts Ser. 2, 7:No. 1, 42 (1979).

    Google Scholar 

  18. E. Scrocco and J. Tomasi, The electrostatic molecular potential as a tool for the interpretation of molecular properties, Fortschr. Chem. Forsch. 42: 95 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spackman, M.A., Stewart, R.F. (1981). Ectrostatic Potentials in Crystals. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics