Electrostatic Potentials as Descriptors of Molecular Reactivity: The Basis for Some Successful Predictions of Biological Activity

  • Harel Weinstein
  • Roman Osman
  • Jack Peter Green
  • Sid Topiol


Almost immediately after the theoretical basis of the molecular electrostatic potential (MEP) was described (see reference 1 for a review) and efficient methods of calculation were devised,2 the MEP became an important reactivity index in studies of a large variety of molecular interactions (for a recent review see reference 3). The utility of this approach to molecular reactivity is continually demonstrated, and the present volume is further proof of the wide scope of use that MEP’s have found in chemistry, biochemistry and related disciplines. Concomitantly there is a growing concern with the shortcomings of the method and a need to illustrate the reasons for success and failure of this approach in studies of molecular reactivity.


Electrostatic Potential Point Charge Molecular Electrostatic Potential Orientation Vector Molecular Reactivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Scrocco and J. Tomasi, The electrostatic molecular potential as a tool for the interpretation of molecular properties, in: “Topics in Current Chemistry, New Concepts II,” Springer-Verlag, New York (1973), p. 95.CrossRefGoogle Scholar
  2. 2.
    S. Srebrenik, H. Weinstein and R. Pauncz, Analytic calculation of atomic and molecular electrostatic potentials from the Poisson equation, Chem. Phys. Lett. 20: 419 (1973).CrossRefGoogle Scholar
  3. 3.
    E. Scrocco and J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: An heuristic interpretation by means of electrostatic molecular potentials, in: “Advances in Quantum Chemistry,” Vol. 11, P. 0. Lowdin, ed., Academic Press, New York (1978), p. 115.Google Scholar
  4. 4.
    J. J. Kaufman and W. S. Koski, Physicochemical, quantum chemical and other theoretical techniques for the understanding of the mechanism of action of CNS agents, in: “Drug Design,” Vol. V, E. J. Ariens, ed., Academic Press, New York (1975), p. 251.Google Scholar
  5. 5.
    J. J. Kaufman, Theoretical approaches to pharmacology, Int. J. Quantum Chem., Quant. Biol. Symp. 4: 375 (1977).Google Scholar
  6. 6.
    H. Weinstein, S. Maayani, S. Srebrenik, S. Cohen and M. Sokolovsky, A theoretical and experimental study of the semirigid cholinergic agonist 3-acetoxyquinuclidine, Mol. Pharmacol. 11: 671 (1975).Google Scholar
  7. 7.
    A. Dargelos, S. El Ouadi, D. Liotard, M. Chaillet and J. Elguero, The limits of electrostatic potential predictions: A theoretical study of nitrous acid and protonated derivatives, Chem. Phys. Lett. 51: 545 (1977).CrossRefGoogle Scholar
  8. 8.
    W. D. Edwards and H. Weinstein, On the basis-set dependence of reported limitations in predictions from electrostatic potentials, Chem. Phys. Lett. 56: 582 (1978).CrossRefGoogle Scholar
  9. 9.
    C. Giessner-Prettre and A. Pullman, Molecular electrostatic potentials: Comparison of ab initio and CNDO results, Theoret. Chim. Acta 25:83 (1972); C. Giessner-Prettre and A. Pullman, On the molecular electrostatic potentials obtained with CNDO and INDO wave functions, Theoret. Chim. Acta 33: 91 (1974).Google Scholar
  10. 10.
    R. Osman and H. Weinstein, Near ab initio methods for the calculation of large molecules: Comparison of pseudopotential and ab initio results, Chem. Phys. Lett. 49: 69 (1977).CrossRefGoogle Scholar
  11. 11.
    R. J. Bartlett and H. Weinstein, Theoretical treatment of multiple-site reactivity in large molecules, Chem. Phys. Lett. 30: 441 (1975).CrossRefGoogle Scholar
  12. 12.
    S. Y. Chang, H. Weinstein and D. Chou, Perturbation treatment of multiple-site reactivity: Molecule-molecule interactions, Chem. Phys. Lett. 42: 145 (1976).CrossRefGoogle Scholar
  13. 13.
    S. Y. Chang and H. Weinstein, Perturbation treatment of multiple-site reactivity. II. Additivity in trimolecular interactions, Int. J. Quantum Chem. 14: 801 (1978).CrossRefGoogle Scholar
  14. 14.
    H. Weinstein, J. E. Eilers and S. Y. Chang, A modified hamiltonian method for the study of multiple-site reactivity: Comparison with perturbation results, Chem. Phys. Lett. 51: 534 (1977).CrossRefGoogle Scholar
  15. 15.
    H. Weinstein, D. Chou, S. Kang, C. L. Johnson and J. P. Green, Reactivity characteristics of large molecules and their biological activity: Indole-alkylamines on the LSD-Serotonin receptor, Int. J. Quantum Chem., Quantum Biol. Symp. 3: 134 (1976).Google Scholar
  16. 16.
    J. P. Green, C. L. Johnson, H. Weinstein, S. Kang and D. Chou, Molecular determinants for interaction with the LSD receptors: Biological studies and quantum chemical analysis, in: “The Psychopharmacology of Hallucinogens,” Pergamon Press, New York (1978), p. 28.Google Scholar
  17. 17.
    H. Weinstein, S. Maayani, S. Srebrenik, S. Cohen and M. Sokolovsky, Psychotomimetics as anticholinergic agents. II. Quantum mechanical study of molecular interaction potentials of 1-cyclohexylpiperidine with the cholinergic receptor, Mol. Pharmacol. 9: 820 (1973).Google Scholar
  18. 18.
    H. Weinstein, Some new quantum chemical procedures for the analysis of drug receptor interaction, Int. J. Quantum Chem., Quantum Biol. Symp. 2: 59 (1975).Google Scholar
  19. 19.
    H. Weinstein, S. Srebrenik, S. Maayani and M. Sokolovsky, A theoretical model study of the comparative effectiveness of atropine and scopolamine action in the central nervous system, J. Theor. Biol. 64 (1977).Google Scholar
  20. 20.
    H. Weinstein, J. P. Green, R. Osman and W. D. Edwards, Recognition and activation mechanisms on the LSD/serotonin receptor: The molecular basis of structure activity relationships, in: “QuaSAR. Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens,” NIDA Research Monograph #22, G. Barnett, M. Trsic and R. E. Willette, eds., National Institute on Drug Abuse, Washington, DC (1978), p. 333.Google Scholar
  21. 21.
    S. Maayani, J. P. Green and H. Weinstein, LSD, tricyclic antidepressants and neuroleptics inhibit histamine stimulated adenylate cyclase in brain, Fed. Proc. 37: 612 (1978).Google Scholar
  22. 22.
    S. Maayani, H. Weinstein and J. P. Green, Brain 5-HT and LSD binding sites, Fed. Proc. 38: 376 (1979).Google Scholar
  23. 23.
    H. Weinstein, R. Osman and J. P. Green, The molecular basis of structure-activity relationships: Quantum chemical recognition mechanisms in drug-receptor interactions, in: “Computer-Assisted Drug Design,” ACS Symposium Series, No. 112, E. C. Olson and R. E. Christoffersen, eds., American Chemical Society, Washington, DC (1979), p. 161.CrossRefGoogle Scholar
  24. 24.
    H. Weinstein, S. Srebrenik, R. Pauncz, S. Maayani, S. Cohen and M. Sokolovsky, Characterization of drug reactivity in cholinergic systems by molecular electrostatic potentials, in: “Chemical and Biochemical Reactivity,” E. D. Bergmann and B. Pullman, eds., Israel Academy of Sciences, Jerusalem (1974), p. 493.CrossRefGoogle Scholar
  25. 25.
    C. L. Johnson, S. Kang and J. P. Green, Stereoelectronic characteristics of LSD and related hallucinogens, in: “LSD - A Total Study,” D. V. S. Sankar, ed., PJD Publishers, Westbury (1975), p. 197.Google Scholar
  26. 26.
    U. Thewalt and C. E. Bugg, The crystal and molecular structure of serotonin picrate monohydrate, Acta Cryst. 328: 82 (1972).Google Scholar
  27. 27.
    R. Foster and C. A. Fyfe, Electron-donor-acceptor complex formation by compounds of biological interest. Part III. Indole Complexes, J. Chem. Soc. B: 926 (1966).Google Scholar
  28. 28.
    S. Srebrenik, H. Weinstein and R. Pauncz, Formulation of molecular forces and their analytical calculation, J. Chem. Phys. 62: 5050 (1974).CrossRefGoogle Scholar
  29. 29.
    H. Sapper and W. Lohmann, Self-association and binding sites of some psychotomimetic tryptamine derivatives and related compounds: NMR investigations, Mol. Pharmacol. 12: 605 (1976).Google Scholar
  30. 30.
    H. Weinstein, R. Osman, W. D. Edwards and J. P. Green, Theoretical models for molecular mechanisms in biological systems: Tryptamine congeners acting on an LSD-serotonin receptor, Int. J. Quantum Chem., Quantum Biol. Symp. 5: 449 (1978).Google Scholar
  31. 31.
    C. Helene, J-L. Dimicoli and F. Brun, Binding of tryptamine and 5-hydroxytryptamine (serotonin) to nucleic acids. Fluorescence and proton magnetic resonance studies, Biochem. 10: 3802 (1971).CrossRefGoogle Scholar
  32. 32.
    T. Nogrady, P. D. Hrdina and G. M. Ling, Investigation into the association between serotonin and adenosine triphosphate in vitro by nuclear magnetic resonance and ultraviolet spectroscopy, Mol. Pharmacol. 8: 565 (1972).Google Scholar
  33. 33.
    H. G. Weder and U. W. Wiegand, The interaction of biogenic amines with adenosine-5’-triphosphate: A calorimetric study, FEBS Lett. 38: 64 (1973).CrossRefGoogle Scholar
  34. 34.
    M. Shinitzky and E. Katchalski, Complexes between indole and imidazole derivatives of the charge-transfer type, in: “Molecular Associations in Biology,” B. Pullman, ed., Academic Press, New York (1968), p. 361.CrossRefGoogle Scholar
  35. 35.
    I. L. Karle, K. S. Dragonette and S. A. Brenner, The crystal and molecular structure of the serotonin-creatinine sulphate complex, Acta Cryst. 19: 713 (1965).CrossRefGoogle Scholar
  36. 36.
    R. Osman, S. Topiol and H. Weinstein, Theoretical studies of molecular complexes: A probe into basis set and correlation effects, Chem. Phys. Lett. 73: 399 (1980).CrossRefGoogle Scholar
  37. 37.
    H. Weinstein and R. Osman, Models for molecular mechanisms in drug-receptor interactions. Serotonin and 5-hydroxyindole complexes with imidazolium cation, Int. J. Quantum Chem., Quantum Biol. Symp. 4: 253 (1977).Google Scholar
  38. 38.
    K. Morokuma, Molecular orbital studies of hydrogen bonds. III. J. Chem. Phys. 55: 1236 (1971).CrossRefGoogle Scholar
  39. 39.
    D. F. Bradley, S. Lifson and B. Honig, Theory of the optical and other properties of biopolymers: Applicability and elimination of the first-neighbor and dipole-dipole approximations, in: “Electronic Aspects of Biochemistry,” B. Pullman, ed., Academic Press, New York (1964), p. 77.Google Scholar
  40. 40.
    V. Renugopalakrishnan, A. V. Lakshminarayanan and V. Sasisekharan, Stereochemistry of nucleic acids and polynucleotides. III. Electronic charge distribution, Biopolymers 10: 1159 (1971).CrossRefGoogle Scholar
  41. 41.
    H. A. Nash and D. F. Bradley, Calculation of the lowest energy configurations of nucleotide base pairs on the basis of an electrostatic model, J. Chem. Phys. 45: 1380 (1966).CrossRefGoogle Scholar
  42. 42.
    P. Claverie, B. Pullman and J. Caillet, Van der Waals - London interaction between stacked purines and pyrimidines, J. Theoret. Biol. 12: 419 (1966).CrossRefGoogle Scholar
  43. 43.
    M. N. Stamatiadou, T. J. Swissler, J. R. Rabinowitz and R. Rein, Complementary DNA base interactions: Application of recently refined electrostatic interaction theory, Biopolymers 11: 1217 (1972).CrossRefGoogle Scholar
  44. 44.
    J. T. Egan, T. J. Swissler and R. Rein, Some improvements in DNA interaction calculations, Int. J. Quantum Chem., Quantum Biol. Symp. 1: 71 (1974).Google Scholar
  45. 45.
    J. Caillet and P. Claverie, Differences of nucleotide stacking patterns in a crystal and in binary complexes. The case of adenine, Biopolymers 13: 601 (1974).CrossRefGoogle Scholar
  46. 46.
    R. L. Ornstein, R. Rein, D. L. Breen and R. D. Macelroy, An optimized potential functions for the calculation of nucleic acid interaction energies. I. Base stacking, Biopolymers 17: 2341 (1978).CrossRefGoogle Scholar
  47. 47.
    H. DeVoe and I. Tinoco, Jr., The stability of helical poly-nucleotides: Base contributions, J. Mol. Biol. 4: 500 (1962).CrossRefGoogle Scholar
  48. 48.
    P. Claverie, Some practical improvements in the calculation of intermolecular energies, in: “Molecular Associations in Biology,” B. Pullman, ed., Academic Press, New York (1968), p. 115.CrossRefGoogle Scholar
  49. 49.
    M. Geller, A. Jaworski and A. Pohorille, Atomic dipole approximation and energies of interaction between purine and pyrimidine bases. I. Electrostatic interactions of adenine with uracil, thymine, thiouracils, dihydrouracil, and 5-fluorouracil, Int. J. Quantum Chem. 15: 369 (1979).Google Scholar
  50. 50.
    Z. G. Kadritskaya and V. F. Danilov, Quantum mechanical study of bases interactions in various associates in atomic dipole approximation, J. Theoret. Biol. 59: 303 (1976).CrossRefGoogle Scholar
  51. 51.
    R. V. Polozov, V. I. Poltev and B. I. Sukhorukov, The influence of nitrous bases interactions on the DNA secondary structure formation, J. Theoret. Biol. 55: 491 (1975).CrossRefGoogle Scholar
  52. 52.
    R. Osman, S. Topiol and H. Weinstein, Electron density redistribution in the stabilization of a molecular stacking complex: The nature and correction of basis set superposition errors. J. Comput. Chem., in press (1980).Google Scholar
  53. 53.
    For a discussion of the method see J. A. Pople, R. Seeger and R. Krishnan, Variational configuration interaction methods and comparison with perturbation theory, Int. J. Quantum Chem., Symp. 11: 149 (1977).Google Scholar
  54. 54.
    S. Topiol, J. W. Moskowitz and C. F. Melius, Atomic coreless Hartree-Fock pseudopotential for atoms Li through Ne, J. Chem. Phys. 70: 3008 (1979).CrossRefGoogle Scholar
  55. 55.
    S. Topiol and R. Osman, On the use of minimal valence basis sets with the coreless Hartree-Fock effective potential, J. Chem. Phys., in press (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Harel Weinstein
    • 1
  • Roman Osman
    • 1
  • Jack Peter Green
    • 1
  • Sid Topiol
    • 1
  1. 1.Department of PharmacologyMount Sinai School of Medicine Of the City University of New YorkNew YorkUSA

Personalised recommendations