Skip to main content

Electrostatic Potentials as Descriptors of Molecular Reactivity: The Basis for Some Successful Predictions of Biological Activity

  • Chapter
Chemical Applications of Atomic and Molecular Electrostatic Potentials

Abstract

Almost immediately after the theoretical basis of the molecular electrostatic potential (MEP) was described (see reference 1 for a review) and efficient methods of calculation were devised,2 the MEP became an important reactivity index in studies of a large variety of molecular interactions (for a recent review see reference 3). The utility of this approach to molecular reactivity is continually demonstrated, and the present volume is further proof of the wide scope of use that MEP’s have found in chemistry, biochemistry and related disciplines. Concomitantly there is a growing concern with the shortcomings of the method and a need to illustrate the reasons for success and failure of this approach in studies of molecular reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Scrocco and J. Tomasi, The electrostatic molecular potential as a tool for the interpretation of molecular properties, in: “Topics in Current Chemistry, New Concepts II,” Springer-Verlag, New York (1973), p. 95.

    Chapter  Google Scholar 

  2. S. Srebrenik, H. Weinstein and R. Pauncz, Analytic calculation of atomic and molecular electrostatic potentials from the Poisson equation, Chem. Phys. Lett. 20: 419 (1973).

    Article  CAS  Google Scholar 

  3. E. Scrocco and J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: An heuristic interpretation by means of electrostatic molecular potentials, in: “Advances in Quantum Chemistry,” Vol. 11, P. 0. Lowdin, ed., Academic Press, New York (1978), p. 115.

    Google Scholar 

  4. J. J. Kaufman and W. S. Koski, Physicochemical, quantum chemical and other theoretical techniques for the understanding of the mechanism of action of CNS agents, in: “Drug Design,” Vol. V, E. J. Ariens, ed., Academic Press, New York (1975), p. 251.

    Google Scholar 

  5. J. J. Kaufman, Theoretical approaches to pharmacology, Int. J. Quantum Chem., Quant. Biol. Symp. 4: 375 (1977).

    CAS  Google Scholar 

  6. H. Weinstein, S. Maayani, S. Srebrenik, S. Cohen and M. Sokolovsky, A theoretical and experimental study of the semirigid cholinergic agonist 3-acetoxyquinuclidine, Mol. Pharmacol. 11: 671 (1975).

    CAS  Google Scholar 

  7. A. Dargelos, S. El Ouadi, D. Liotard, M. Chaillet and J. Elguero, The limits of electrostatic potential predictions: A theoretical study of nitrous acid and protonated derivatives, Chem. Phys. Lett. 51: 545 (1977).

    Article  CAS  Google Scholar 

  8. W. D. Edwards and H. Weinstein, On the basis-set dependence of reported limitations in predictions from electrostatic potentials, Chem. Phys. Lett. 56: 582 (1978).

    Article  CAS  Google Scholar 

  9. C. Giessner-Prettre and A. Pullman, Molecular electrostatic potentials: Comparison of ab initio and CNDO results, Theoret. Chim. Acta 25:83 (1972); C. Giessner-Prettre and A. Pullman, On the molecular electrostatic potentials obtained with CNDO and INDO wave functions, Theoret. Chim. Acta 33: 91 (1974).

    CAS  Google Scholar 

  10. R. Osman and H. Weinstein, Near ab initio methods for the calculation of large molecules: Comparison of pseudopotential and ab initio results, Chem. Phys. Lett. 49: 69 (1977).

    Article  CAS  Google Scholar 

  11. R. J. Bartlett and H. Weinstein, Theoretical treatment of multiple-site reactivity in large molecules, Chem. Phys. Lett. 30: 441 (1975).

    Article  CAS  Google Scholar 

  12. S. Y. Chang, H. Weinstein and D. Chou, Perturbation treatment of multiple-site reactivity: Molecule-molecule interactions, Chem. Phys. Lett. 42: 145 (1976).

    Article  CAS  Google Scholar 

  13. S. Y. Chang and H. Weinstein, Perturbation treatment of multiple-site reactivity. II. Additivity in trimolecular interactions, Int. J. Quantum Chem. 14: 801 (1978).

    Article  CAS  Google Scholar 

  14. H. Weinstein, J. E. Eilers and S. Y. Chang, A modified hamiltonian method for the study of multiple-site reactivity: Comparison with perturbation results, Chem. Phys. Lett. 51: 534 (1977).

    Article  CAS  Google Scholar 

  15. H. Weinstein, D. Chou, S. Kang, C. L. Johnson and J. P. Green, Reactivity characteristics of large molecules and their biological activity: Indole-alkylamines on the LSD-Serotonin receptor, Int. J. Quantum Chem., Quantum Biol. Symp. 3: 134 (1976).

    Google Scholar 

  16. J. P. Green, C. L. Johnson, H. Weinstein, S. Kang and D. Chou, Molecular determinants for interaction with the LSD receptors: Biological studies and quantum chemical analysis, in: “The Psychopharmacology of Hallucinogens,” Pergamon Press, New York (1978), p. 28.

    Google Scholar 

  17. H. Weinstein, S. Maayani, S. Srebrenik, S. Cohen and M. Sokolovsky, Psychotomimetics as anticholinergic agents. II. Quantum mechanical study of molecular interaction potentials of 1-cyclohexylpiperidine with the cholinergic receptor, Mol. Pharmacol. 9: 820 (1973).

    CAS  Google Scholar 

  18. H. Weinstein, Some new quantum chemical procedures for the analysis of drug receptor interaction, Int. J. Quantum Chem., Quantum Biol. Symp. 2: 59 (1975).

    CAS  Google Scholar 

  19. H. Weinstein, S. Srebrenik, S. Maayani and M. Sokolovsky, A theoretical model study of the comparative effectiveness of atropine and scopolamine action in the central nervous system, J. Theor. Biol. 64 (1977).

    Google Scholar 

  20. H. Weinstein, J. P. Green, R. Osman and W. D. Edwards, Recognition and activation mechanisms on the LSD/serotonin receptor: The molecular basis of structure activity relationships, in: “QuaSAR. Quantitative Structure Activity Relationships of Analgesics, Narcotic Antagonists, and Hallucinogens,” NIDA Research Monograph #22, G. Barnett, M. Trsic and R. E. Willette, eds., National Institute on Drug Abuse, Washington, DC (1978), p. 333.

    Google Scholar 

  21. S. Maayani, J. P. Green and H. Weinstein, LSD, tricyclic antidepressants and neuroleptics inhibit histamine stimulated adenylate cyclase in brain, Fed. Proc. 37: 612 (1978).

    Google Scholar 

  22. S. Maayani, H. Weinstein and J. P. Green, Brain 5-HT and LSD binding sites, Fed. Proc. 38: 376 (1979).

    Google Scholar 

  23. H. Weinstein, R. Osman and J. P. Green, The molecular basis of structure-activity relationships: Quantum chemical recognition mechanisms in drug-receptor interactions, in: “Computer-Assisted Drug Design,” ACS Symposium Series, No. 112, E. C. Olson and R. E. Christoffersen, eds., American Chemical Society, Washington, DC (1979), p. 161.

    Chapter  Google Scholar 

  24. H. Weinstein, S. Srebrenik, R. Pauncz, S. Maayani, S. Cohen and M. Sokolovsky, Characterization of drug reactivity in cholinergic systems by molecular electrostatic potentials, in: “Chemical and Biochemical Reactivity,” E. D. Bergmann and B. Pullman, eds., Israel Academy of Sciences, Jerusalem (1974), p. 493.

    Chapter  Google Scholar 

  25. C. L. Johnson, S. Kang and J. P. Green, Stereoelectronic characteristics of LSD and related hallucinogens, in: “LSD - A Total Study,” D. V. S. Sankar, ed., PJD Publishers, Westbury (1975), p. 197.

    Google Scholar 

  26. U. Thewalt and C. E. Bugg, The crystal and molecular structure of serotonin picrate monohydrate, Acta Cryst. 328: 82 (1972).

    Google Scholar 

  27. R. Foster and C. A. Fyfe, Electron-donor-acceptor complex formation by compounds of biological interest. Part III. Indole Complexes, J. Chem. Soc. B: 926 (1966).

    Google Scholar 

  28. S. Srebrenik, H. Weinstein and R. Pauncz, Formulation of molecular forces and their analytical calculation, J. Chem. Phys. 62: 5050 (1974).

    Article  Google Scholar 

  29. H. Sapper and W. Lohmann, Self-association and binding sites of some psychotomimetic tryptamine derivatives and related compounds: NMR investigations, Mol. Pharmacol. 12: 605 (1976).

    Google Scholar 

  30. H. Weinstein, R. Osman, W. D. Edwards and J. P. Green, Theoretical models for molecular mechanisms in biological systems: Tryptamine congeners acting on an LSD-serotonin receptor, Int. J. Quantum Chem., Quantum Biol. Symp. 5: 449 (1978).

    CAS  Google Scholar 

  31. C. Helene, J-L. Dimicoli and F. Brun, Binding of tryptamine and 5-hydroxytryptamine (serotonin) to nucleic acids. Fluorescence and proton magnetic resonance studies, Biochem. 10: 3802 (1971).

    Article  CAS  Google Scholar 

  32. T. Nogrady, P. D. Hrdina and G. M. Ling, Investigation into the association between serotonin and adenosine triphosphate in vitro by nuclear magnetic resonance and ultraviolet spectroscopy, Mol. Pharmacol. 8: 565 (1972).

    CAS  Google Scholar 

  33. H. G. Weder and U. W. Wiegand, The interaction of biogenic amines with adenosine-5’-triphosphate: A calorimetric study, FEBS Lett. 38: 64 (1973).

    Article  CAS  Google Scholar 

  34. M. Shinitzky and E. Katchalski, Complexes between indole and imidazole derivatives of the charge-transfer type, in: “Molecular Associations in Biology,” B. Pullman, ed., Academic Press, New York (1968), p. 361.

    Chapter  Google Scholar 

  35. I. L. Karle, K. S. Dragonette and S. A. Brenner, The crystal and molecular structure of the serotonin-creatinine sulphate complex, Acta Cryst. 19: 713 (1965).

    Article  CAS  Google Scholar 

  36. R. Osman, S. Topiol and H. Weinstein, Theoretical studies of molecular complexes: A probe into basis set and correlation effects, Chem. Phys. Lett. 73: 399 (1980).

    Article  CAS  Google Scholar 

  37. H. Weinstein and R. Osman, Models for molecular mechanisms in drug-receptor interactions. Serotonin and 5-hydroxyindole complexes with imidazolium cation, Int. J. Quantum Chem., Quantum Biol. Symp. 4: 253 (1977).

    CAS  Google Scholar 

  38. K. Morokuma, Molecular orbital studies of hydrogen bonds. III. J. Chem. Phys. 55: 1236 (1971).

    Article  CAS  Google Scholar 

  39. D. F. Bradley, S. Lifson and B. Honig, Theory of the optical and other properties of biopolymers: Applicability and elimination of the first-neighbor and dipole-dipole approximations, in: “Electronic Aspects of Biochemistry,” B. Pullman, ed., Academic Press, New York (1964), p. 77.

    Google Scholar 

  40. V. Renugopalakrishnan, A. V. Lakshminarayanan and V. Sasisekharan, Stereochemistry of nucleic acids and polynucleotides. III. Electronic charge distribution, Biopolymers 10: 1159 (1971).

    Article  CAS  Google Scholar 

  41. H. A. Nash and D. F. Bradley, Calculation of the lowest energy configurations of nucleotide base pairs on the basis of an electrostatic model, J. Chem. Phys. 45: 1380 (1966).

    Article  CAS  Google Scholar 

  42. P. Claverie, B. Pullman and J. Caillet, Van der Waals - London interaction between stacked purines and pyrimidines, J. Theoret. Biol. 12: 419 (1966).

    Article  CAS  Google Scholar 

  43. M. N. Stamatiadou, T. J. Swissler, J. R. Rabinowitz and R. Rein, Complementary DNA base interactions: Application of recently refined electrostatic interaction theory, Biopolymers 11: 1217 (1972).

    Article  CAS  Google Scholar 

  44. J. T. Egan, T. J. Swissler and R. Rein, Some improvements in DNA interaction calculations, Int. J. Quantum Chem., Quantum Biol. Symp. 1: 71 (1974).

    CAS  Google Scholar 

  45. J. Caillet and P. Claverie, Differences of nucleotide stacking patterns in a crystal and in binary complexes. The case of adenine, Biopolymers 13: 601 (1974).

    Article  CAS  Google Scholar 

  46. R. L. Ornstein, R. Rein, D. L. Breen and R. D. Macelroy, An optimized potential functions for the calculation of nucleic acid interaction energies. I. Base stacking, Biopolymers 17: 2341 (1978).

    Article  CAS  Google Scholar 

  47. H. DeVoe and I. Tinoco, Jr., The stability of helical poly-nucleotides: Base contributions, J. Mol. Biol. 4: 500 (1962).

    Article  CAS  Google Scholar 

  48. P. Claverie, Some practical improvements in the calculation of intermolecular energies, in: “Molecular Associations in Biology,” B. Pullman, ed., Academic Press, New York (1968), p. 115.

    Chapter  Google Scholar 

  49. M. Geller, A. Jaworski and A. Pohorille, Atomic dipole approximation and energies of interaction between purine and pyrimidine bases. I. Electrostatic interactions of adenine with uracil, thymine, thiouracils, dihydrouracil, and 5-fluorouracil, Int. J. Quantum Chem. 15: 369 (1979).

    CAS  Google Scholar 

  50. Z. G. Kadritskaya and V. F. Danilov, Quantum mechanical study of bases interactions in various associates in atomic dipole approximation, J. Theoret. Biol. 59: 303 (1976).

    Article  Google Scholar 

  51. R. V. Polozov, V. I. Poltev and B. I. Sukhorukov, The influence of nitrous bases interactions on the DNA secondary structure formation, J. Theoret. Biol. 55: 491 (1975).

    Article  CAS  Google Scholar 

  52. R. Osman, S. Topiol and H. Weinstein, Electron density redistribution in the stabilization of a molecular stacking complex: The nature and correction of basis set superposition errors. J. Comput. Chem., in press (1980).

    Google Scholar 

  53. For a discussion of the method see J. A. Pople, R. Seeger and R. Krishnan, Variational configuration interaction methods and comparison with perturbation theory, Int. J. Quantum Chem., Symp. 11: 149 (1977).

    Google Scholar 

  54. S. Topiol, J. W. Moskowitz and C. F. Melius, Atomic coreless Hartree-Fock pseudopotential for atoms Li through Ne, J. Chem. Phys. 70: 3008 (1979).

    Article  CAS  Google Scholar 

  55. S. Topiol and R. Osman, On the use of minimal valence basis sets with the coreless Hartree-Fock effective potential, J. Chem. Phys., in press (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weinstein, H., Osman, R., Green, J.P., Topiol, S. (1981). Electrostatic Potentials as Descriptors of Molecular Reactivity: The Basis for Some Successful Predictions of Biological Activity. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics