The π-Fluoro Effect: An Empirical Use of Atomic Electrostatic Potentials

  • Joel F. Liebman
  • Peter Politzer
  • David C. Rosen

Abstract

The term “π-fluoro effect” refers to the experimental observation that in many molecules, the ionization potentials of π-electrons change relatively little when a hydrogen atom is replaced by a fluorine. This was first systematically studied, although in a more limited sense, by Brundle, et al.,1 and was called the “per-fluoro effect”.

Keywords

Ionization Potential Electrostatic Potential Electron Affinity Proton Affinity Electrostatic Molecular Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. R. Brundle, M. B. Robin, N. A. Kuebler and H. Basch, Perfluoro effect in photoelectron spectroscopy. I. Nonaromatic molecules, J. Am. Chem. Soc. 94: 1451 (1972);CrossRefGoogle Scholar
  2. C. R. Brundle, M. B. Robin and N. A. Kuebler, Perfluoro effect in photo-electron spectroscopy. II. Aromatic molecules, J. Am. Chem. Soc. 94: 1466 (1972).CrossRefGoogle Scholar
  3. 2.
    See, for example, H. M. Rosenstock, K. Draxl, B. W. Steiner and J. T. Herron, Energetics of gaseous ions, J. Phys. Chem. Ref. Data 6, Suppl. 1 (1977), Chapter 5.Google Scholar
  4. 3.
    R. L. DeKock and M. R. Barbachyn, Proton affinity, ionization energy, and the nature of frontier orbital electron density, J. Am. Chem. Soc. 1Q1: 6516 (1979).Google Scholar
  5. 4.
    G. Delgado-Barrio and R. F. Prat, Deformed Hartree-Fock solutions for atoms. III. Convergent iterative process and results for 0—, Phys. Rev. Al2: 2288 (1975).Google Scholar
  6. 5.
    H. Weinstein, P. Politzer and S. Srebrenik, A misconception concerning the electronic density distribution of an atom, Theoret. Chim. Acta 38: 159 (1975).CrossRefGoogle Scholar
  7. 6.
    L. S. Bartell and R. M. Gavin, Jr., Effects of electron correlation in X-ray and electron diffraction, J. Am. Chem. Soc. 86: 3493 (1964);CrossRefGoogle Scholar
  8. R. L. Hilderbrandt and R. A. Bonham, Structure determination by gas electron diffraction, in: “Annual Reviews of Physical Chemistry,” Vol. 22, H. Eyring, ed., Annual Reviews, Inc., Palo Alto, CA (1971), p. 279;Google Scholar
  9. M. Fink, D. Gregory and P. G. Moore, Experimental determination of the charge density of the bond-forming electrons in N2, Phys. Rev. Lett. 37: 15 (1976).CrossRefGoogle Scholar
  10. 7.
    P. Coppens and E. D. Stevens, Accurate X-ray diffraction and quantum chemistry: The study of charge density distributions, in: “Advances in Quantum Chemistry,” Vol. 10, P.-0. Löwdin, ed., Academic Press, New York (1977), p. 1;Google Scholar
  11. R. F. Stewart, On the mapping of electrostatic properties from Bragg diffraction data, Chem. Phys. Lett. 65: 335 (1979);CrossRefGoogle Scholar
  12. J. Bentley, Determination of electronic energies from experimental electron densities, J. Chem. Phys. 70: 159 (1979).CrossRefGoogle Scholar
  13. 8.
    E. Clementi, “Tables of Atomic Functions,” IBM Corp., San Jose, CA (1965).Google Scholar
  14. 9.
    C. M$ller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Phys. Rev. 46: 618 (1934);CrossRefGoogle Scholar
  15. M. Cohen and A. Dalgarno, Stationary properties of the Hartree-Fock approximation, Proc. Phys. Soc. (London) 77: 748 (1961).CrossRefGoogle Scholar
  16. 10.
    J. A. Pople and R. Seeger, Electron density in Miller-Plesset theory, J. Chem. Phys. 62: 4566 (1975).CrossRefGoogle Scholar
  17. 11.
    P. Politzer, Physical aspects of main-group homonuclear bonding, in: “Homoatomic Rings, Chains and Macromolecules of Main-Group Elements,” A. L. Rheingold, ed., Elsevier Scientific Publishing Co., New York (1977), p. 95.Google Scholar
  18. 12.
    See, for example, R. F. W. Bader, W. H. Henneker and P. E. Cade, Molecular charge distributions and chemical binding, J. Chem. Phys. 46: 3341 (1967);Google Scholar
  19. B. J. Ransil and J. J. Sinai, Toward a charge-density analysis of the chemical bond; the charge-density bond model, J. Chem. Phys. 46: 4050 (1967);CrossRefGoogle Scholar
  20. M. J. Hazelrigg, Jr. and P. Politzer, The electronic structures of carbon monoxide, carbon dioxide and carbonyl sulfide, J. Phys. Chem. 73: 1008 (1969);CrossRefGoogle Scholar
  21. P. Politzer and R. R. Harris, A study of the electronic density distribution in nitric oxide, J. Am. Chem. Soc. 92: 1834 (1970).CrossRefGoogle Scholar
  22. 13.
    For recent reviews, see E. Scrocco and J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: An heuristic interpretation by means of electrostatic molecular potentials, in: “Advances in Quantum Chemistry,” Vol. 11, P.-0. Löwdin, ed., Academic Press, New York (1978), p. 116;Google Scholar
  23. P. Politzer and K. C. Daiker, Models for chemical reactivity, in: “The Force Concept in Chemistry,” B. M. Deb, ed., Van Nostrand Reinhold, New York (1980), in press.Google Scholar
  24. 14.
    C. Petrongolo and J. Tomasi, The use of the electrostatic molecular potential in quantum pharmacology. I. Ab initio results, Int. J. Quantum Chem., Quantum Biol. Symp. 2: 181 (1975).Google Scholar
  25. 15.
    J. Almlgf, A. Henriksson-Enflo, J. Kowalewski and M. Sundbom, Theoretical studies of electrophilic substitutions in fluoro-benzene, Chem. Phys. Lett. 21: 560 (1973).CrossRefGoogle Scholar
  26. 16.
    J. D. Dill, A. Greenberg and J. F. Liebman, Substituent effects on strain energies, J. Am. Chem. Soc. 101: 6814 (1979).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Joel F. Liebman
    • 1
  • Peter Politzer
    • 2
  • David C. Rosen
    • 1
  1. 1.Department of ChemistryUniversity of Maryland Baltimore CountyCatonsvilleUSA
  2. 2.Department of ChemistryUniversity of New OrleansNew OrleansUSA

Personalised recommendations