Skip to main content

Use of the Electrostatic Potential as a Guide to Understanding Molecular Properties

  • Chapter
Chemical Applications of Atomic and Molecular Electrostatic Potentials

Abstract

Electrostatic models in chemistry have a long history, dating back to Faraday’s time, and were never completely abandoned even after the advent of quantum theory. Recently though there has been a revival of interest. This revival, of which the present book is a manifestation, is not a direct filiation of such early models, but rather derives from the progress made in the last ten years in using computers to get descriptions of increasing complexity for the electronic wave functions of molecules of considerable size, isolated or interacting. The amount of numerical information available to and being generated by theoretical chemists today is enormous, and the present situation, which surpasses the hopes and the dreams of the preceding generation of theoreticians, creates new problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. McWeeny, Some recent advances in density matrix theory, Rev. Mod. Phys. 32: 335 (1960).

    Article  Google Scholar 

  2. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136B: 864 (1964).

    Article  Google Scholar 

  3. E. Scrocco and J. Tomasi, The electrostatic molecular potential as a tool for the interpretation of molecular properties, Top. Curr. Chem. 42: 95 (1973).

    CAS  Google Scholar 

  4. E. Scrocco and J. Tomasi, Electronic molecular structure, reactivity and molecular forces: A heuristic interpretation by means of electrostatic molecular potentials, Adv. Quantum Chem. 11: 115 (1978).

    Article  CAS  Google Scholar 

  5. K. Morokuma, Molecular orbital studies of hydrogen bonds. III. C=0•••H-0 hydrogen bond in H2C0•••H20 and H2C0•••2H20, J. Chem. Phys. 46: 1768 (1971).

    Google Scholar 

  6. H. Umeyama, K. Kitaura and K. Morokuma. Energy decomposition analysis along the reaction coordinate. Theory and example: F- + HF i FHF-, Chem. Phys. Lett. 36: 11 (1975).

    Article  CAS  Google Scholar 

  7. C. Ghio and J. Tomasi, The protonation of three-membered ring molecules: The ab initio SCF versus the electrostatic picture of the proton approach, Theoret. Chini. Acta 30: 151 (1973).

    CAS  Google Scholar 

  8. R. Bonaccorsi, E. Scrocco and J. Tomasi, A representation of the polarization term in the interaction energy between a molecule and a point-like charge, Theoret. Chini. Acta 43: 63 (1976).

    CAS  Google Scholar 

  9. H. Umeyama and K. Morokuma, Origin of the alkyl substituent effect in proton affinities of amines, alcohols and ethers, J. Am. Chem. Soc. 98: 4400 (1976).

    Article  CAS  Google Scholar 

  10. R. Bonaccorsi, E. Scrocco, and J. Tomasi, Group contributions to the electrostatic molecular potential, J. Am. Chem. Soc. 98: 4049 (1976);

    Article  Google Scholar 

  11. R. Bonaccorsi, E. Scrocco and J. Tomasi, An approximate expression of the electrostatic molecular potential in terms of completely transferable group contributions, J. Am. Chem. Soc. 99: 4546 (1977).

    Article  Google Scholar 

  12. R. Bonaccorsi, C. Ghio, E. Scrocco and J. Tomasi, The effect of intramolecular interactions on the transferability properties of localized description of chemical groups, Israel J. Chem. 19: 109 (1980).

    CAS  Google Scholar 

  13. R. J. W. Le Fevre, Molecular refractivity and polarizability, Adv. Phys. Org. Chem. 3: 1 (1965).

    Google Scholar 

  14. A. Pullman, SCF ab initio study of the protonation of the peptide bond, Chem. Phys. Lett. 20: 29 (1973).

    Article  CAS  Google Scholar 

  15. D. Chou and H. Weinstein, Electron charge redistribution following electrophylic attack on heterocycles: Nitrogen as a charge transducer, Tetrahedron 34: 275 (1978).

    Article  CAS  Google Scholar 

  16. P. Claverie, Elaboration of approximate formulas for the interactions between large molecules: Applications in organic chemistry, in: “Intermolecular Interactions: From Diatomics to Biomolecules,” B. Pullman, ed., Wiley, Chichester (1978), p 71

    Google Scholar 

  17. P. Schuster, W. Jakubetz and W. Marius, Molecular models for the solution of small ions and polar molecules, Top. Curr. Chem. 60: 1 (1975).

    Article  CAS  Google Scholar 

  18. P. A. Kollman, Hydrogen bonding and dono-acceptor interactions, in: “Applications of Electronic Structure Theory,” H. Schaefer III, ed., Plenum Press, New York (1977), p. 109.

    Chapter  Google Scholar 

  19. P. Schuster, The fine structure of hydrogen bonding, in: “Intermolecular Interactions: From Diatomics to Biopolymers,” B. Pullman, ed., Wiley, Chichester (1978), p. 363.

    Google Scholar 

  20. J. Tomasi, Electrostatic molecular potential model and its application to the study of molecular aggregations, in: “Molecular Interactions, Vol. 3,” W. J. Orville-Thomas and H. Ratajczak, Eds., Wiley, Chichester (to be published).

    Google Scholar 

  21. H. Umeyama and K. Morokuma, The origin of the hydrogen bonding. An energy decomposition study, J. Am. Chem. Soc. 99: 1316 (1977).

    Article  CAS  Google Scholar 

  22. P. A. Kollman, A general analysis of noncovalent intermolecular interactions, J. Am. Chem. Soc. 99: 4875 (1977).

    Article  CAS  Google Scholar 

  23. R. Bonaccorsi, C. Petrongolo, E. Scrocco and J. Tomasi, Theoretical investigations on the solvation process. I. A simple model for the dimeric water associate, Theoret. Chim. Acta 20: 331 (1971).

    Article  CAS  Google Scholar 

  24. G. Alagona, R. Cimiraglia, E. Scrocco and J. Tomasi, Theoreti-cal investigations on the solvation process. II. The mono-hydrated associates of some three-membered ring molecules, Theoret. Chim. Acta 25: 103 (1972).

    Article  CAS  Google Scholar 

  25. G. Alagona, A. Pullman, E. Scrocco and J. Tomasi, Quantum-mechanical studies of environmental effects on biomolecules. I. Hydration of formamide, Int. J. Peptide Protein Res. 5: 251 (1973).

    Article  CAS  Google Scholar 

  26. Chalvet, R. Daudel, S. Diner and J. P. Malrieu, “Localiza-tion and Delocalization in Quantum Chemistry. I. Atoms and Molecules in the Ground States,” Reidel, Dordrecht (1975).

    Google Scholar 

  27. C. Ghio, E. Scrocco and J. Tomasi, The effect of substitution on the properties of a chemical group. I. An analysis of the SCF description of changes in the CN group in the monosubstituted acrylonitriles, Theoret. Chîm. Acta 50: 117 (1978).

    CAS  Google Scholar 

  28. C. Chio, E. Scrocco and J. Tomasi, The effect of substitution on the properties of a chemical group. II. An analysis of the SCF description of changes in the C=C group in monosubstituted ethylenes and acrylonitriles, Theoret. Chico. Acta, 56: 61 (1980).

    Google Scholar 

  29. C. Ghio, E. Scrocco and J. Tomasi, The effect of substitution on the properties of a chemical group. III. An analysis of the SCF description of changes in the C-H groups in mono-substituted ethylenes and acrylonitriles, Theoret. Chico. Acta, 56: 75 (1980).

    CAS  Google Scholar 

  30. J. L. Gazquez, N. K. Ray and R. G. Parr, Simple electrostatic models for vibrating unsymmetrical triatomic molecules and triatomic ions, Theoret. Chico. Acta 49: 1 (1978).

    CAS  Google Scholar 

  31. B. M. Deb, A simple mechanical model for molecular geometries based on the Hellmann-Feynmann theorem. I. General principles and applications to AH2, AH3, AH4, AB2, HAB and ABC molecules, J. Am. Chem. Soc. 96: 2030 (1974).

    CAS  Google Scholar 

  32. R. Nakatsuji, Common natures of the electron cloud of the system undergoing change in nuclear configuration, J. Am. Chem. Soc. 96: 24 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tomasi, J. (1981). Use of the Electrostatic Potential as a Guide to Understanding Molecular Properties. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics