Energy Decomposition Analysis of Molecular Interactions

  • Keiji Morokuma
  • Kazuo Kitaura

Abstract

In the theoretical study of molecular interactions, ab initio molecular orbital calculations have been applied successfully in predicting the binding energy and the geometry of intermolecular complexes.1–3 In what is called the supermolecule method the entire complex is considered as a supermolecule, and the calculated energy difference between the supermolecule and the monomers is the binding energy. In order to facilitate an interpretation of the results, methods have been proposed4–7 to decompose the interaction energy into physically meaningful energy components such as electrostatic, polarization, charge transfer, and exchange energies. Analyses of many molecular complexes along these lines have provided the basis for elucidating the origin or the nature of various molecular interactions such as hydrogen bonds and electron donor-acceptor complexes.

Keywords

Interaction Energy Proton Affinity Energy Component Total Interaction Energy Energy Decomposition Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Morokuma, Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity, Acc. Chem. Res. 10: 294 (1977).CrossRefGoogle Scholar
  2. 2.
    P. A. Kollman, Hydrogen bonding and donor-acceptor interactions, in: “Application of Electronic Structure Theory,” H. F. Schaefer III, ed., Plenum, New York (1977), p. 109.CrossRefGoogle Scholar
  3. 3.
    K. Morokuma and K. Kitaura, Variational approach (SCF ab initio calculations) to the study of molecular interactions: The origin of molecular interactions, in: “Molecular Interactions,” H. Ratajczak and W. J. Orville-Thomas, Eds., John Wiley, London (1980).Google Scholar
  4. 4.
    K. Morokuma, Molecular orbital studies of hydrogen bonds. III. C=0...H-0 hydrogen bond in H2C0...H20 and H2C0....2H20, J. Chem. Phys. 55: 1236 (1971).CrossRefGoogle Scholar
  5. 5.
    K. Kitaura and K. Morokuma, A new energy decomposition scheme for molecular interactions within the Hartree-Fock approximation, Int. J. Quantum Chem. 10: 325 (1976).CrossRefGoogle Scholar
  6. 6.
    P. A. Kollman and L. C. Allen, Theory of the hydrogen bond: Ab initio calculations on hydrogen fluoride dimer and the mixed water-hydrogen fluoride dimer, J. Chem. Phys. 52: 5085 (1970).CrossRefGoogle Scholar
  7. 7.
    M. Dreyfus, B. Maigret and A. Pullman, A non-empirical study of hydrogen bonding in the dimer of formamide, Theor. Chim. Acta 17: 109 (1970).CrossRefGoogle Scholar
  8. 8.
    S. Yamabe and K. Morokuma, Molecular orbital studies of hydrogen bonds. IX. Electron distribution analysis, J. Am. Chem. Soc. 97: 4458 (1975).CrossRefGoogle Scholar
  9. 9.
    W. J. Hehre, W. A. Lathan, R. Ditchfield, M. D. Newton and J. A. Pople, GAUSSIAN70: Program No. 236 of the Quantum Chemistry Program Exchange, Indiana University, Bloomington, IN.Google Scholar
  10. 10.
    H. Margenau and N. R. Kestner, “Theory of Intermolecular Forces,” Pergamon, New York (1971).Google Scholar
  11. 11.
    H. Umeyama and K. Morokuma, The origin of hydrogen bonding. An energy decomposition study, J. Am. Chem. Soc. 99: 1316 (1977).CrossRefGoogle Scholar
  12. 12.
    S. Nagase, T. Fueno, S. Yamabe and K. Kitaura, An energy decomposition scheme applicable to strongly interacting systems, Theor. Chim. Acta 49: 309 (1978).CrossRefGoogle Scholar
  13. 13.
    H. Umeyama, K. Kitaura and K. Morokuma, Energy decomposition analysis along the reaction coordinate. Theory and example: F- + HF -> [FHF]-, Chem. Phys. Lett. 36: 11 (1975).CrossRefGoogle Scholar
  14. 14.
    S. F. Boys and F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19: 553 (1970).CrossRefGoogle Scholar
  15. 15.
    A. Meunier, B. Levy and G. Berthier, Coorélation éléctronique et effects de base dans l’étude de la liaison hydrogène: le dimère mixte ammoniac-eau, Theor. Chim. Acta 29: 49 (1973).CrossRefGoogle Scholar
  16. 16.
    W. Kolos, Possible improvement of the interaction energy calculated using minimal basis sets, Theor. Chini. Acta 51: 219 (1979).Google Scholar
  17. 17.
    H. Umeyama and K. Morokuma, Molecular orbital studies of electron donor-acceptor complexes. 3. Energy and charge decomposition analyses for several strong complexes: OC-BH3, H3N-BH3, CH3H2N-BH3, (CH3)3N-BH3 and H3N-BF3, J. Am. Chem. Soc. 98: 7208 (1976).CrossRefGoogle Scholar
  18. 18.
    H. Umeyama and K. Morokuma, Origin of alkyl substituent effect in the proton affinity of amines, alcohols, and ethers, J. Am. Chem. Soc. 98: 4400 (1976).CrossRefGoogle Scholar
  19. 19.
    S. Nagase and K. Morokuma, An ab initio MO study of organic reactions. The energy, charge and spin decomposition analyses at the transition state and along the reaction pathway, J. Am. Chem. Soc. 100: 1666 (1978).CrossRefGoogle Scholar
  20. 20.
    J. O. Noell and K. Morokuma, The relative stability of bent and linear coordination of the nitrosyl ligand in nitrosylpentaamminecobalt(III), Co(NH3)5NO2+. An ab initio investigation, Inorg. Chem. 18: 2774 (1979).Google Scholar
  21. 21.
    M. J. S. Dewar, A review of the u-complex theory, Bull. Soc. Chini. France 18: C71 (1951).Google Scholar
  22. 22.
    K. Kitaura, S. Sakai and K. Morokuma, The bonding in Ni(PH3)2(C2Hi) and Ni(PH3)2(C2H2). An ab initio SCF-MO study, Inorg. Chem., in press.Google Scholar
  23. 23.
    C. A. Tolman, Olefin complexes of Ni(0). III. Formation constants of (olefin)bis(tri-o-tolyl phosphite)nickel complexes, J. Am. Chem. Soc. 96: 2780 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Keiji Morokuma
    • 1
  • Kazuo Kitaura
    • 1
  1. 1.Institute for Molecular ScienceMyodaiji Okazaki 444Japan

Personalised recommendations