Skip to main content

Abstract

The electrostatic potential at a point \(\vec r\) in the vicinity of an atomic or molecular system having an electronic density function ρ(\(\vec r\) ) is given, in atomic units,* by

${V^{ES}}\left( {\overrightarrow r } \right) = \sum\limits_A {\frac{{{Z_A}}}{{\left| {{{\overrightarrow R }_A} - \overrightarrow r } \right|}}} - \int {\frac{{\rho \left( {\overrightarrow {r'} } \right)\overrightarrow {dr'} }}{{\left| {\overrightarrow {r'} - \overrightarrow r } \right|}}}$
(1)

where ZA is the charge on nucleus A, located at \({\vec R_A}\) A. The two terms on the right side of equation (1) correspond, respectively, to the nuclear and electronic contributions to the potential. As can be seen, they have opposite signs and accordingly opposite effects; VES (\(\vec r\)) represents the net result at any point \(\vec r\). The electrostatic potential is a real physical property, which is rigorously defined by equation (1). It is exactly equal in magnitude to the electrostatic (coulombic) interaction energy between the static (i.e., unperturbed) charge distribution of the system and a positive unit point charge located at \(\vec r\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Ilohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. 136: B864 (1964).

    Article  Google Scholar 

  2. P. Gombas, “Die Statistische Theorïe des Atoms und ihre Anwendungen,” Springer, Vienna (1949); N. M. March, The Thomas-Fermi approximation in quantum mechanics, Advan. Phys. 6:1 (1957); J. Goodisman, On the partitioning of energy for atoms, ions and molecules, Theoret. Chim. Acta 15:165 (1973); J. Goodisman, Modified quantum-statistical calculations for atomic electron densities, Phys. Rev. A 2:1193 (1970); E. H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Advan. Math. 23:22 (1977). See also J. Schwinger, Thomas-Fermi model: The leading correction, Phys. Rev. A 22: 1827 (1980).

    Google Scholar 

  3. C. Moller and M. S. Plesset, Note on an approximation treatment for many-electron systems, Phys. Rev. 46:618 (1934); M. Cohen and A. Dalgarno, Stationary properties of the HartreeFock approximation, Proc. Phys. Soc. (London) 77:748 (1961); W. A. Goddard III, Improved quantum theory of many-electron systems. IV. Properties of GF wave functions, J. Chem. Phys. 48: 5337 (1968).

    Google Scholar 

  4. G. Blyholder and C. A. Coulson, Basis of extended-Hückel formalism, Theoret. Chinn. Acta 10:316 (1968); J. Goodisman, The isoelectronic principle and the accuracy of binding energies in the Mickel method, J. Am. Chem. Soc. 91:6552 (1969); P. Politzer, R. K. Smith and S. D. Kasten, Energy calculations with the extended-Hückel method, Chem. Phys. Lett. 15: 226 (1972).

    Google Scholar 

  5. E. Scrocco and J. Tomasi, The electrostatic molecular potential as a tool for the interpretation of molecular properties, Top. Curr. Chem. 42:95 (1973); E. Scrocco and J. Tomasi, Electronic molecular structure, reactivity and intermolecular forces: An heuristic interpretation by means of electrostatic molecular potentials, Advan. Quantum Chem. 11:116 (1978); J. Tomasi, On the use of electrostatic molecular potentials in theoretical investigations on chemical reactivity, in: “Quantum Theory of Chemical Reactions,” R. Daudel, A. Pullman, L. Salem and A. Veillard, eds., D. Reidel Publishing Co., Dordrecht, Reidel Publishing Co., (1979), Vol. I, p. 191.

    Google Scholar 

  6. P. Politzer and K. C. Daiker, Models for chemical reactivity, in: “The Force Concept in Chemistry,” B. M. Deb, ed., Van Nostrand-Reinhold, Princeton, NJ (1981), in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Politzer, P., Truhlar, D.G. (1981). Introduction: The Role of the Electrostatic Potential in Chemistry. In: Politzer, P., Truhlar, D.G. (eds) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9634-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9634-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9636-0

  • Online ISBN: 978-1-4757-9634-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics