Polypeptide Hormones and Receptors: Participants in and Products of a Two Parameter, Dissipative, Measure Preserving, Smooth Dynamical System in Hydrophobic Mass Energy

  • Arnold J. Mandell
Part of the NATO ASI Series book series (NSSA, volume 138)


Loss of a complex Fourier spectrum and the emergence of a single periodic mode indicate loss of information transport capacity, desensitisation, in the dynamics of signal-sensitive neurobiological systems. These findings are consistent with coding theorems requiring the growth rate of orbits (topological entropy) of a channel to be equal to or exceed that of its source of information. The problem becomes that of developing a coding scheme consistent with protein motions characteristic of chaotic dynamical systems.

Integrating the Cartwright-Littlewood differential equation representing forced dissipation in hydrophobic free energy in the parameter regions of its homoclinic bifurcations, digitising the resulting time series, and autocovariance and Fourier transformation generated a full range of polypeptides resembling those found in the brain.

Using the same analytic scheme, similar patterns in hydrophobic broad bands were found between several neuroendocrine polypeptide ligands and their protein receptors.


Homoclinic Orbit Homoclinic Bifurcation Polypeptide Hormone Homoclinic Tangency Spiral Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G.D. Birkhoff, Mem. Pont. Acad. Sci. Novi Lyncaei 1: 85–126 (1935).Google Scholar
  2. [2]
    R.G. Bryant and J.E. Jentoft, J. Am. Chem. Soc. 96: 297–289 (1974).PubMedCrossRefGoogle Scholar
  3. [3]
    C. Chothia, Nature 248: 338–339 (1974).PubMedCrossRefGoogle Scholar
  4. [4]
    C. Chothia, M. Levitt and D. Richardson, Proc. Natl. Acad. Sci. USA 74: 4120–4234 (1977).CrossRefGoogle Scholar
  5. [5]
    J. Deschamps, R.L. Mitchell, F. Maÿlink, W. Kruyer, D. Schubert and I.M. Verma, Cold Spr. Harb. Symp. Quant. Biol. 1: 733–745 (1985).CrossRefGoogle Scholar
  6. [6]
    R.E. Dickerson and I. Geis,“The Structure and Action of Proteins”, W.A. Benjamin, Reading, Mass., (1969).Google Scholar
  7. [7]
    J.T. Edsall, J. Am. Chem. Soc. 57: 1506–1507 (1935).CrossRefGoogle Scholar
  8. [8]
    D. Farmer, J. Crutchfield, H. Froehling, N. Packard and R. Shaw, Ann. N.Y. Acad. Sci. 357: 453–472 (1980).CrossRefGoogle Scholar
  9. [9]
    H.S. Frank and M.W. Evans, J. Chem. Phys. 13: 507–532 (1945).CrossRefGoogle Scholar
  10. [9a]
    B. Jirgensons, “Optical Activity of Proteins and Other Macromolecules”, Springer-Verlag, New York (1973).CrossRefGoogle Scholar
  11. [10]
    J. Leffler and E. Grunwald, “Rates and Equilibria of Organic Reactions”, Wiley, New York (1963).Google Scholar
  12. [11]
    R. Lumry and S. Rajender, Biopolymers 9: 1125–1227 (1970).PubMedCrossRefGoogle Scholar
  13. [12]
    A.J. Mandell, P.V. Russo and B.W. Blomgren, Ann. N.Y. Acad. Sci., in press (1986).Google Scholar
  14. [13]
    S. Newhouse, Pub. Math. I.H.E.S. 50: 101–151 (1979).Google Scholar
  15. [14]
    R.H. Pain, in “Characterization of Protein Conformation and Function”, F. Franks, ed., 19–36, Symposium Press, London (1977).Google Scholar
  16. [15]
    J. Palis and F. Takens, IMPA preprint (1985).Google Scholar
  17. [16]
    R.M. Pashley, P.M. McGuiggan, B.W. Ninham and D. Fennell-Evans, Science 229: 1088–1089. (1985).PubMedCrossRefGoogle Scholar
  18. [17]
    P.L. Privalov and N.N. Khechinashvili, J. Mol. Biol. 86: 665–684 (1974).PubMedCrossRefGoogle Scholar
  19. [18]
    J.A. Reynolds, D.B. Gilbert and C. Tanford, Proc. Natl. Acad. Sci. USA 71: 2925–2927 (1974).PubMedCrossRefGoogle Scholar
  20. [19]
    J. Rivier, C. Rivier and W. Vale, Science 224: 889–891 (1984).PubMedCrossRefGoogle Scholar
  21. [20]
    G.D. Rose, Nature 272: 586–590 (1978).PubMedCrossRefGoogle Scholar
  22. [20a]
    D. Ruelle “Thermodynamic Formalism”, Addison-Wesley, Reading, MA (1978).Google Scholar
  23. [21]
    S. Smale, Bull. Math. Soc. 73: 747–817 (1967).CrossRefGoogle Scholar
  24. [22]
    C. Tanford, “The Hydrophobic Effect”, Wiley, New York (1980).Google Scholar
  25. [23]
    E.J. Walker, G.B. Ralston and I.G. Darvey, Biochem. J. 147: 425433 (1975).Google Scholar
  26. [24]
    C.K. Woodward and B.D. Hilton, Ann. Rev. Biophys. Bioeng. 8: 99127 (1979).CrossRefGoogle Scholar
  27. [25]
    F.N. Zeytin and R. DeLellis, Endocrinology 121: in press (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Arnold J. Mandell
    • 1
  1. 1.Laboratory of Biological Dynamics and Theoretical Medicine (M-003)University of CaliforniaLa JollaUSA

Personalised recommendations