Homoclinic Bifurcations in Ordinary Differential Equations

  • Paul Glendinning
Part of the NATO ASI Series book series (NSSA, volume 138)

Abstract

Some global bifurcations of low codimension are described, and the results are used to give scaling properties of travelling and solitary waves in the FitzHugh-Nagumo equations.

Keywords

Periodic Orbit Solitary Wave Homoclinic Orbit Homoclinic Bifurcation Local Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V.S. Afraimovich and L.P. Shil’nikov, in “Nonlinear dynamics and Turbulence”, G.I. Barenblatt, G. Iooss and D.D. Joseph, eds., Pitman (1983).Google Scholar
  2. [2]
    A., Arneodo, P. Coullet and C. Tresser, Phys. Lett. 81A: 197–201 (1981).CrossRefGoogle Scholar
  3. [3]
    P. Collet, P. Coullet and C. Tresser, J. de Phys. Lettres 46: 143–147 (1984).CrossRefGoogle Scholar
  4. [4]
    P. Coullet, J.M. Gambaudo and C. Tresser, C.R. Acad. Sci. (Paris) Serie 1, 299: 253–256.Google Scholar
  5. [5]
    P. Coullet, C. Tresser and A. Arneodo, Phys. Lett. 72A: 268–270 (1979)CrossRefGoogle Scholar
  6. [6]
    J. Evans, N. Fenichel and J.A. Feroe, SIAM J. Appl. Math. 42: 219–234 (1982).CrossRefGoogle Scholar
  7. [7]
    J.A. Feroe, SIAM J. Appl. Math. 42: 235–246 (1982).Google Scholar
  8. [8]
    A.C. Fowler and C. Sparrow, Bifocal homoclinic orbits in four dimensions, preprint, University of Oxford (1984).Google Scholar
  9. [9]
    J.M. Gambaudo, P. Glendinning and C. Tresser, C.R. Acad. Sci. (Paris) Serie 1, 299: 711–714 (1984).Google Scholar
  10. [10]
    J.M. Gambaudo, P. Glendinning and C. Tresser, The gluing bifurcation I: symbolic dynamics of closed curves, submitted to Comm. Math. Phys. (1985a).Google Scholar
  11. [11]
    J.M. Gambaudo, P. Glendinning and C. Tresser, J. de Phys. Lettres 46: L653 - L658 (1985b).CrossRefGoogle Scholar
  12. [12]
    J.M. Gambaudo, P. Glendinning, D.A. Rand and C. Tresser, The gluing bifurcation III: stable foliations and periodic orbits, preprint (1986).Google Scholar
  13. [13]
    P. Gaspard, Phys. Lett. 97A: 1–4 (1984a).Google Scholar
  14. [14]
    P. Gaspard, Bull. Class. Sci. Acad. Roy. Belg., Serie 5, LXX: 61–83 (1984b).Google Scholar
  15. [15]
    P. Gaspard, R. Kapral and G. Nicolis, J. Stat. Phys. 35: 697–727 (1984).CrossRefGoogle Scholar
  16. [16]
    P. Glendinning, Phys. Lett. 103A: 163–166 (1984).CrossRefGoogle Scholar
  17. [17]
    P. Glendinning, Asymmetric perturbations of Lorenz-like equations, preprint, University of Warwick (1986).Google Scholar
  18. [18]
    P. Glendinning and C. Sparrow, J. Stat. Phys. 35: 645–696 (1984).CrossRefGoogle Scholar
  19. [19]
    S.P. Hastings, SIAM J. Appl. Math. 42:247–260. (19).Google Scholar
  20. [20]
    P. Holmes, J. Diff. Equ. 37: 382–403 (1980).CrossRefGoogle Scholar
  21. [21]
    E.N. Lorenz, J. Atmos. Sci. 20: 130–141 (1963).CrossRefGoogle Scholar
  22. [22]
    A. Pumir, P. Manneville and Y. Pomeau, J. Fluid Mech. 135: 27–50 (1983)CrossRefGoogle Scholar
  23. [23]
    L.P. Shil’nikov, Sov. Math. Dokl. 6: 163–166 (1965).Google Scholar
  24. [24]
    L.P. Shil’nikov, Sov. Math. Dokl. 8: 54–58 (1967).Google Scholar
  25. [25]
    L.P. Shil’nikov, Math. USSR Sb. 6: 427–438 (1968).CrossRefGoogle Scholar
  26. [26]
    L.P. Shil’nikov, Math. USSR Sb. 10: 91–102.Google Scholar
  27. [27]
    C. Sparrow, The Lorenz equations: bifurcations, chaos and strange attractors, Appi. Math. Sci. 41, Springer (1982).Google Scholar
  28. [28]
    C. Tresser, Homoclinic orbits for flows in R3, preprint (1983b).Google Scholar
  29. [29]
    C. Tresser, Ann. Inst. H. Poincare 40: 441–461 (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Paul Glendinning
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations