Chaos in Ecology and Epidemiology

  • W. M. Schaffer
Part of the NATO ASI Series book series (NSSA, volume 138)

Abstract

Methods of identifying chaos as the origin of irregularity in time series are applied to observations and models from ecology and epidemiology.

Keywords

Chaotic System Phase Portrait Bifurcation Diagram Childhood Disease Chaotic Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J.L. Aron and I.B. Schwartz, J. Theor. Biol 110: 665–679 (1984).PubMedCrossRefGoogle Scholar
  2. [2]
    N.B. Abraham, J.P. Gollub and H.L. Swinney, Physica 11D: 252–264 (1983).Google Scholar
  3. [3]
    R.M. Anderson and R.M. May, Science 215: 1053–1060 (1982).Google Scholar
  4. A. Arneodo, P. Coullet and C. Tresser, Phys. Lett 79a: 259–263 (1980).Google Scholar
  5. [5]
    H. Bai-Lin, “Chaos”, World Scientific (1984).Google Scholar
  6. [6]
    A. Brandstdter, J. Swift, H.L. Swinney, A. Wolf, J.D. Farmer and E. Jen, Phys. Rev. Lett. 51: 1442–1445 (1983).CrossRefGoogle Scholar
  7. [7]
    P. Cvitanovic, “Universality in Chaos”, Adam Hílger Ltd. (1984).Google Scholar
  8. [8]
    J.D. Farmer, Physica 4D: 366–393 (1982).Google Scholar
  9. [9]
    D. Farmer, J. Crutchfield, H. Froehlin, N. Packard and R. Shaw, Ann. N.Y. Acad. Sci. 357: 453–472.Google Scholar
  10. [10]
    J.D. Farmer, E. Ott and J.A. Yorke, Physica 7D: 153–180.Google Scholar
  11. M.J. Feigenbaum, J. Stat. Phys 19: 25–52.Google Scholar
  12. H.M. Gibbs, F.A. Hopf, D.L. Kaplan and R.L. Shoemaker, Phys. Rev Lett. 46: 474–477 (1981).Google Scholar
  13. [13]
    M.E. Gilpin, Am. Nat 113: 306–308 (1979).CrossRefGoogle Scholar
  14. [14]
    L. Glass and M.C. Mackey, Ann. N.Y. Acad. Sci. 356: 214–235 (1979).CrossRefGoogle Scholar
  15. J. Guckenheimer, G. Oster and A. Ipaktchi, J. Math. Biol 4: 101147 (1976).Google Scholar
  16. [16]
    V. Guillemin and A. Pollack, “Differential Topology”, Prentice-Hall (1974).Google Scholar
  17. [17]
    M.P. Hassell, J.H. Lawton and R.M. May, J Anim. Ecol. 45: 471–486 (1976).Google Scholar
  18. M. Hénon, Commun. Math. Phys 50: 69–78 (1976).Google Scholar
  19. [19]
    Y. Kuramoto, in “Statistical Physics and chaos in fusion plasmas”, C.W. Horton and L.E. Reichl, eds., 93–110, J. Wiley (1984).Google Scholar
  20. [20]
    H.A. Lauwerier, in “Chaos”, A.V. Holden, ed., 58–96, Manchester Univ. Press, Manchester (1986).Google Scholar
  21. [21]
    E.N. Lorenz, Ann. N.Y. Acad. Sci. 282–291 (1980).Google Scholar
  22. [22]
    M.C. Mackey and L. Glass, Science 197: 287–289 (1977).Google Scholar
  23. [23]
    R.M. May, Science 197:Google Scholar
  24. [24]
    R.M. May, in “Ecology and evolution of communities”, M.L. Cody and J.M. Diamond, eds., 81–120, Belknap Press (1974).Google Scholar
  25. [25]
    R.M. May, Nature 261: 459–467 (1976).CrossRefGoogle Scholar
  26. [26]
    R.M. May, Ann. N.Y. Acad. Sci. 357: 267–281 (1980).CrossRefGoogle Scholar
  27. [27]
    L.F. Olsen, Theor. Pop. Biol., in press (1986).Google Scholar
  28. [28]
    L.F. Olsen and H. Degn, Nature 267: 177–178 (1977).Google Scholar
  29. [29]
    J.-C. Roux, R.H. Simoyi and H.L. Swinney, Physica 8D: 257–266 (1983).Google Scholar
  30. [30]
    M.L. Rosenzweig, M.L. and R.H. McArthur, Am. Nat 47: 209–223 (1963).CrossRefGoogle Scholar
  31. [31]
    D. Ruelle, Ann. N.Y. Acad. Sci 316: 408–416 (1979).CrossRefGoogle Scholar
  32. [32]
    W.M. Schaffer, Am. Nat 124: 798–820 (1984).CrossRefGoogle Scholar
  33. W.M. Schaffer, IMA J. Math. Appl. Med. Biol 2: 221–252 (1985a).Google Scholar
  34. [34]
    W.M. Schaffer, Ecology 66: 93–106 (1985b).CrossRefGoogle Scholar
  35. [35]
    W.M. Schaffer, Trends Ecol. Evol. 1: 58–63 (1986).Google Scholar
  36. [36]
    W.M. Schaffer, in “Evolution of life histories: theory and patterns from mammals”, M. Boyce, ed., Yale Univ. Press, in press (1987).Google Scholar
  37. W.M. Schaffer, S.E. Ellner and M. Kot, J. Math. Biol 24: 479–523 (1986).Google Scholar
  38. [38]
    W.M. Schaffer and M. Kot, Biosci 35: 342–350 (1985a).Google Scholar
  39. [39]
    W.M. Schaffer and M. Kot, J Theor. Biol. 112: 403–427 (1985b).Google Scholar
  40. [40]
    L.P. Shil’nikov, Sov. Math. Dokl. 6: 163–166 (1965).Google Scholar
  41. [41]
    S. Smale, J Math. Biol 2: 5–7 (1976).Google Scholar
  42. [42]
    D.R. Strong, J.H. Lawton and R. Southwood, “Insects on Plants”, Harvard University Press (1984).Google Scholar
  43. [43]
    F. Takens, in “Dynamical systems and turbulence”, D.A. Rand and L.-S. Young, eds., 366–381, Springer-Verlag (1981).Google Scholar
  44. [44]
    J.S. Testa, J. Perez, and C. Jeffries, Phys Rev. Lett. 48: 714718 (1982).Google Scholar
  45. [45]
    C.B. Williams, “Patterns in the balance of nature”, A.P. (1964).Google Scholar
  46. [46]
    J.A. Yorke and W.P. London, Am. J Epidem. 98: 469–482 (1973).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • W. M. Schaffer
    • 1
  1. 1.Department of Ecology and Evolutionary Biology and Program in Applied MathematicsThe University of ArizonaTucsonUSA

Personalised recommendations