The Role of Area 17 in the Transfer of Information to Extrastriate Visual Cortex

  • Jean Bullier
  • Pascal Girard
  • Paul-Antoine Salin
Part of the Cerebral Cortex book series (CECO, volume 10)

Abstract

The ideas concerning the role of area 17 in the transfer of visual information to the rest of the cerebral cortex have for a long time been influenced by the results of behavioral studies of primates following cortical lesions. Since the last century it has been known that lesions of area 17 lead to blindness in humans (for a review see Weiskrantz, 1986, and Rizzo, this volume). This critical role of area 17 in vision was used in the beginning of the 20th century by Inouye in Japan and Holmes in Great Britain to map the representation of the visual field in area 17 of humans by delimiting the extents of scotomata resulting from focal lesions in area 17 of wounded soldiers. In 1942, the results of an extensive study by Klüver of monkeys with cortical lesions seemed to leave little doubt that, for this species as well, area 17 is necessary for any kind of vision beyond a simple discrimination between light and dark. Rudimentary sensitivity to light had also been noted to persist in humans with lesions of area 17 by Holmes (1918) and Riddoch (1917). Interestingly, this last author noted a weak residual sensitivity to moving targets, but no perception of stationary objects.

Keywords

Receptive Field Superior Colliculus Visual Response Macaque Monkey Striate Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright, T. D., 1989, Centrifugal direction bias in the middle temporal visual area (MT) of the macaque, Visual Neurosci. 2: 177–188.CrossRefGoogle Scholar
  2. Andersen, R. A., Asanuma, C., Essig, G. K., and Siegel, R. M., 1990a, Corticocortical connexions of anatomically and physiologically defined subdivisions within the inferior parietal lobule, J. Comp. Neurol. 296: 65–113.PubMedCrossRefGoogle Scholar
  3. Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W., and Fogassi, L., 1990b, Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque, J. Neurosci. 10: 1176–1196.PubMedGoogle Scholar
  4. Baizer, J. S., Ungerleider, L. G., and Desimone, R., 1991, Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques, J. Neurosci. 11: 168–190.PubMedGoogle Scholar
  5. Baleydier, C., and Morel, A., 1992, Segregated thalamocortical pathways to inferior parietal and inferotemporal cortex in macaque monkey, Visual Neurosci. 8: 391–405.CrossRefGoogle Scholar
  6. Baylis, G. C., Rolls, E. T., and Leonard, C. M., 1987, Functional subdivisions of the temporal lobe neocortex, J. Neurosci. 7: 330–342.PubMedGoogle Scholar
  7. Bender, D. B., 1982, Receptive field properties of neurons in the macaque inferior pulvinar, J. Neurophysiol. 48: 1–17.PubMedGoogle Scholar
  8. Bender, D. B., 1983, Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus, Brain Res. 279: 258–261.PubMedCrossRefGoogle Scholar
  9. Benevento, L. A., and Standage, G. P., 1983, The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey, J. Comp. Neurol. 217: 307–336.PubMedCrossRefGoogle Scholar
  10. Benevento, L. A., and Yoshida, K., 1981, The afferent and efferent organization of the lateral geniculo-prestriate pathways in the macaque monkey, J. Comp. Neurol. 203: 455–474.PubMedCrossRefGoogle Scholar
  11. Berkley, M., Wolf, E., and Glickstein, M., 1967, Photic evoked potentials in the cat: Evidence for a direct geniculate input to visual II, Exp. Neurol. 19: 188–198.PubMedCrossRefGoogle Scholar
  12. Birnbacher, D., and Albus, K., 1987, Divergence of single axons in afferent projections to the cat’s visual cortical areas 17, 18 and 19: A parametric study, J. Comp. Neurol. 261: 543–561.PubMedCrossRefGoogle Scholar
  13. Blythe, I. M., Bromley, J. M., Kennard, C., and Ruddock, K. H., 1987, Residual vision in patients with retrogeniculate lesions of the visual pathways, Brain 110: 887–905.PubMedCrossRefGoogle Scholar
  14. Boch, R., Fischer, B., and Ramsperger, E., 1984, Express-saccades of the monkey: Reaction times versus intensity, size, duration and eccentricity of their targets, Exp. Brain Res. 55: 223–231.PubMedCrossRefGoogle Scholar
  15. Boussaoud, D., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connexions of the MST and fundus of the superior temporal sulcus visual areas in the macaque, J. Comp. Neurol. 296: 462–495.PubMedCrossRefGoogle Scholar
  16. Bruce, C. J., Desimone, R., and Gross, C. G., 1981, Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque, J. Neurophysiol. 46: 369–384.PubMedGoogle Scholar
  17. Bruce, C. J., Desimone, R., and Gross, C. G., 1986, Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey, J. Neurophysiol. 55: 1057–1075.PubMedGoogle Scholar
  18. Bullier, J., and Kennedy, H., 1983, Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey, Exp. Brain Res. 53: 168–172.PubMedCrossRefGoogle Scholar
  19. Bullier, J., Kennedy, H., and Salinger, W., 1984, Bifurcation of subcortical afferents to visual areas 17, 18 and 19 in the cat cortex, J. Comp. Neurol. 228: 309–328.PubMedCrossRefGoogle Scholar
  20. Burman, D., Feisten, G., and Benevento, L. A., 1982, Visual properties of neurons in the lateral pulvinar of normal and occipital lobectomized macaques, ARVO Abstr. 22: 237.Google Scholar
  21. Casanova, C., Michaud, Y., Morin, C., McKinley, P. A., and Molotchnikoff, S., 1992, Visual responsiveness and direction selectivity of cells in area 18 during local reversible inactivation of area 17 in cats, Visual Neurosci. 9: 581–593.CrossRefGoogle Scholar
  22. Cavada, C., and Goldman-Rakic, P. S., 1989, Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections, J. Comp. Neurol. 287: 393–421.PubMedCrossRefGoogle Scholar
  23. Chino, Y. M., Kaas, J. H., Smith, E. L., III, Langston, A. L., and Cheng, H., 1992, Rapid reorganization of cortical maps in adult cats following restricted deafferentation in retina, Vision Res. 32: 789–796.PubMedCrossRefGoogle Scholar
  24. Coleman, J., and Clerici, W. J., 1980, Extrastriate projections from thalamus to posterior occipitaltemporal cortex in rat, Brain Res. 194: 205–209.PubMedCrossRefGoogle Scholar
  25. Cowey, A., and Weiskrantz, L., 1963, A perimetric study of visual field defects in monkeys, Q.J. Exp. Psychol. 15: 91–115.CrossRefGoogle Scholar
  26. Creutzfeldt, O. D., 1988, Extrageniculo-striate visual mechanisms: Compartmentalization of visual functions, Prog. Brain Res. 75: 307–320.PubMedCrossRefGoogle Scholar
  27. Cynader, M., and Berman, N., 1972, Receptive field organization of monkey superior colliculus, J. Neurophysiol. 35: 187–201.PubMedGoogle Scholar
  28. Dean, P., Redgrave, P., and Westby, G. W. M., 1989, Event or emergency? Two response systems in the mammalian superior colliculus, Trends Neurosci. 12: 137–147.PubMedCrossRefGoogle Scholar
  29. Desimone, R., Fleming, J., and Gross, C. G., 1980, Prestriate afferents to inferior temporal cortex: An HRP study, Brain Res. 184: 41–55.PubMedCrossRefGoogle Scholar
  30. DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.PubMedCrossRefGoogle Scholar
  31. DeYoe, E. A., and Sisola, L. C., 1991, Distinct pathways link anatomical subdivisions of V4 with V2 and temporal cortex in the macaque monkey, Soc. Neurosci. Abstr. 511.8.Google Scholar
  32. Diamond, I. T., 1976, Organization of the visual cortex: Comparative anatomical and behavioral studies, Fed. Proc. 35: 60–67.PubMedGoogle Scholar
  33. Diamond, I. T., and Hall, W. C., 1969, Evolution of neocortex, Science 164: 251–262.PubMedCrossRefGoogle Scholar
  34. Dineen, J., and Keating, E. G., 1981, The primate visual system after bilateral removal of striate cortex (survival of complex pattern vision), Exp. Brain Res. 41: 338–345.PubMedGoogle Scholar
  35. Donaldson, I. M. L., and Nash, J. R. G., 1975, The effect of a chronic lesion in cortical area 17 on the visual responses of units in area 18 of the cat, J. Physiol, (London) 245: 325–332.Google Scholar
  36. Doty, R., 1958, Potentials evoked in cat cerebral cortex by diffuse and by punctiform photic stimuli, J. Neurophysiol. 21: 437–464.PubMedGoogle Scholar
  37. Doty, R. W., 1971, Survival of pattern vision after removal of striate cortex in the adult cat, J. Comp. Neurol. 143: 341–369.PubMedCrossRefGoogle Scholar
  38. Dreher, B., and Cottee, L. J., 1975, Visual receptive-field properties of cells in area 18 of cat’s cerebral cortex before and after lesions in area 17, J. Neurophysiol. 38: 735–750.PubMedGoogle Scholar
  39. Dürsteier, M. R., Blakemore, C., and Garey, L. J., 1979, Projections of the visual cortex in the golden hamster, J. Comp. Neurol. 183: 185–204.CrossRefGoogle Scholar
  40. Eysel, U. T., and Schmidt-Kastner, R., 1991, Neuronal dysfunction at the border of focal lesions in cat visual cortex, Neurosci. Lett. 131: 45–48.PubMedCrossRefGoogle Scholar
  41. Felleman, D. J., and Van Essen, D. C., 1987, Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex, J. Neurophysiol. 57: 889–920.PubMedGoogle Scholar
  42. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb. Cortex 1: 1–47.PubMedCrossRefGoogle Scholar
  43. Feisten, G., Benevento, L. A., and Burman, D., 1983, Opponent-color responses in macaque extrageniculate pathways: The lateral pulvinar, Brain Res. 288: 363–367.CrossRefGoogle Scholar
  44. Fischer, B., and Ramsperger, E., 1986, Human express-saccades: Effects of daily practice and randomization, Exp. Brain Res. 64: 569–578.PubMedCrossRefGoogle Scholar
  45. Fischer, B., Boch, R., and Ramsperger, E., 1984, Express-saccades of the monkey: Effect of daily training on probability of occurrence and reaction time, Exp. Brain Res. 55: 232–242.PubMedCrossRefGoogle Scholar
  46. Flechsig, P., 1896, Lieber die Lokalisation der geistigen Vorgänge, insbesondere der Sinnesempfindungen des Menschen, Veit, Leipzig.Google Scholar
  47. Fries, W., 1981, The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey, Proc. R. Soc. London Ser. B 213: 73–80.CrossRefGoogle Scholar
  48. Galletti, C., and Battaglini, P. P., 1989, Gaze-dependent visual neurons in area V3a of monkey prestriate cortex, J. Neurosci. 9: 1112–1125.PubMedGoogle Scholar
  49. Garey, L. J., 1965, Interrelationships of the visual cortex and superior colliculus in the cat, Nature 207: 1410–1411.PubMedCrossRefGoogle Scholar
  50. Gaska, J. P., Jacobson, L. D., and Pollen, D. A., 1988, Spatial and temporal frequency selectivity of neurons in visual cortical area V3a of the macaque monkey, Vision Res. 28: 1179–1191.PubMedCrossRefGoogle Scholar
  51. Geisert, E. E., 1980, Cortical projections of the lateral geniculate nucleus in the cat, J. Comp. Neural. 190: 793–812.CrossRefGoogle Scholar
  52. Gibson, J. J., 1950, The Perception of the Visual World, Houghton Mifflin, Boston.Google Scholar
  53. Gilbert, C. D., and Kelly, J. P., 1975, The projections of cells in different layers of the cat’s visual cortex, J. Comp. Neurol. 163: 81–106.PubMedCrossRefGoogle Scholar
  54. Gilbert, C. D., and Wiesel, T. N., 1992, Receptive field dynamics in adult primary visual cortex, Nature 356: 150–152.PubMedCrossRefGoogle Scholar
  55. Girard, P., and Bullier, J., 1989, Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey, J. Neurophysiol. 62: 1287–1302.PubMedGoogle Scholar
  56. Girard, P., Salin, P. A., and Bullier, J., 1991a, Visual activity in macaque area V4 depends on area 17 input, Neuroreport 2: 81–84.PubMedCrossRefGoogle Scholar
  57. Girard, P., Salin, P. A., and Bullier, J., 1991b, Visual activity in areas V3A and V3 during reversible inactivation of area VI in the macaque monkey, J. Neurophysiol. 66: 1493–1503.PubMedGoogle Scholar
  58. Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1, J. Neurophysiol. 67: 1–10.Google Scholar
  59. Glickstein, M., King, R. A., Miller, J., and Berkley, M., 1967, Cortical projections from the dorsal lateral geniculate nucleus of cats, J. Comp. Neurol. 130: 55–76.PubMedCrossRefGoogle Scholar
  60. Goldberg, M. E., and Wurtz, R. H., 1972, Activity in the superior colliculus in behaving monkey. I. Visual receptive fields of single neurons, J. Neurophysiol. 35: 542–559.PubMedGoogle Scholar
  61. Goodale, M. A., Pélisson, D., and Prablanc, C., 1986, Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement, Nature 320: 748–750.PubMedCrossRefGoogle Scholar
  62. Gross, C. G., 1991, Contribution of striate cortex and the superior colliculus to visual function in area MT, the superior temporal polysensory area and inferior temporal cortex, Neuropsychologia 29: 497–515.PubMedCrossRefGoogle Scholar
  63. Hall, W. C., and Diamond, I. T., 1968, Organization and function of the visual cortex in hedgehog. II. An ablation study of pattern discrimination, Brain Behav. Evol. 1: 215–243.CrossRefGoogle Scholar
  64. Harting, J. K., Huerta, M. F., Frankfurter, H. J., Strominger, N. L., and Royce, G. J., 1980, Ascending pathways from the monkey superior colliculus: An autoradiographic analysis, J. Comp. Neurol. 192: 853–882.PubMedCrossRefGoogle Scholar
  65. Hikosaka, K., Iwai, E., Saito, H. A., and Tanaka, K., 1988, Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey, J. Neurophysiol. 60: 1615–1637.PubMedGoogle Scholar
  66. Holländer, H., and Hälbig, W., 1980, Topography of retinal representation in the rabbit cortex: An experimental study using transneuronal and retrograde technique, J. Comp. Neurol. 193: 701–710.PubMedCrossRefGoogle Scholar
  67. Holländer, H., and Vanegas, H., 1977, The projections from the lateral geniculate nucleus onto the visual cortex in the cat. A quantitative study with horseradish peroxidase, J. Comp. Neurol. 173: 519–536.PubMedCrossRefGoogle Scholar
  68. Holmes, G., 1918, Disturbances of visual orientation, Br. J. Ophthalmol. 2: 449–486, 506-516.PubMedCrossRefGoogle Scholar
  69. Hughes, H. C., 1977, Anatomical and neurobehavioral investigations concerning the thalamocortical organization of the rat’s visual system, J. Comp. Neurol. 175: 311–336.PubMedCrossRefGoogle Scholar
  70. Humphrey, N. K., 1974, Vision in a monkey without striate cortex: A case study, Perception 3: 241–255.PubMedCrossRefGoogle Scholar
  71. Humphrey, N. K., and Weiskrantz, L., 1967, Vision in monkeys after removal of striate cortex, Nature 215: 595–597.PubMedCrossRefGoogle Scholar
  72. Itaya, S. K., and Van Hoesen, G. W., 1983, Retinal projections to the inferior and medial pulvinar nuclei in the Old World monkey, Brain Res. 269: 223–230.PubMedCrossRefGoogle Scholar
  73. Kaas, J. H., and Krubitzer, L. A., 1992, Area 17 lesions deactivate area MT in owl monkey, Visual Neurosci. 9: 399–407.CrossRefGoogle Scholar
  74. Kaas, J. H., Merzenich, M. M., and Killackey, H. P., 1983, The reorganization of somatosensory cortex following peripheral nerve damage in adult and developing mammals, Annu. Rev. Neurosci. 6: 325–356.PubMedCrossRefGoogle Scholar
  75. Kaas, J. H., Krubitzer, L. A., Chino, Y. M., Langston, A. L., Polley, E. H., and Blair, N., 1990, Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina, Science 248: 229–231.PubMedCrossRefGoogle Scholar
  76. Karamanlidis, A. N., Saigal, R. P., Giolli, R. A., Mangana, O., and Michaloudi, H., 1979, Visual thalamocortical connections in sheep studied by means of the retrograde transport of horseradish peroxidase, J. Comp. Neurol. 187: 245–260.PubMedCrossRefGoogle Scholar
  77. Keating, E. G., 1979, Rudimentary color vision in the monkey after removal of striate and preoccipital cortex, Brain Res. 179: 379–384.PubMedCrossRefGoogle Scholar
  78. Keating, E. G., 1980, Residual spatial vision in the monkey after removal of striate and preoccipital cortex, Brain Res. 187: 271–290.PubMedCrossRefGoogle Scholar
  79. Kennedy, H., and Bullier, J., 1985, A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey, J. Neurosci. 5: 2815–2830.PubMedGoogle Scholar
  80. Kihlstrom, J. F., 1987, The cognitive unconscious, Science 237: 1445–1452.PubMedCrossRefGoogle Scholar
  81. Killackey, H., Snyder, M., and Diamond, I. T., 1971, Function of striate and temporal cortex in the tree shrew, J. Comp. Physiol. Psychol. 74: 1–29.PubMedCrossRefGoogle Scholar
  82. Kisvárday, Z. F., Cowey, A., Stoerig, P., and Somogyi, P., 1991, Direct and indirect retinal input into degenerated dorsal lateral geniculate nucleus after striate cortical removal in monkey: Implications for residual vision, Exp. Brain Res. 86: 271–292.PubMedCrossRefGoogle Scholar
  83. Klüver, H., 1942, Functional significance of the geniculo-striate system, Biol. Symp. 7: 253–299.Google Scholar
  84. Lepore, F., Cardu, B., Rasmussen, T., and Malmo, R. B., 1975, Rod and cone sensitivity in destriate monkeys, Brain Res. 93: 203–221.PubMedCrossRefGoogle Scholar
  85. Lin, C. S., and Kaas, J. H., 1979, The inferior pulvinar complex in owl monkeys: Architectonic subdivisions and patterns of input from the superior colliculus and subdivisions of visual cortex, J. Comp. Neurol. 187: 655–678.PubMedCrossRefGoogle Scholar
  86. Lysakowski, A., Standage, G. P., and Benevento, L. A., 1988, An investigation of collateral projections of the dorsal lateral geniculate nucleus and other subcortical structures to cortical areas V1 and V4 in the macaque monkey: A double label retrograde tracer study, Exp. Brain Res. 69: 651–661.PubMedCrossRefGoogle Scholar
  87. Maciewicz, R. J., 1975, Thalamic afferents to areas 17, 18 and 19 of cat traced with horseradish peroxidase, Brain Res. 84: 308–312.PubMedCrossRefGoogle Scholar
  88. Marcel, A. J., 1988, Phenomenal experience and functionalism, in: Consciousness in Contemporary Science (A. J. Marcel and E. Bisiach, eds.), Oxford Science Publication, pp. 121-158.Google Scholar
  89. Marrocco, R. T., and Li, R. H., 1977, Monkey superior colliculus: Properties of single cells and their afferent inputs, J. Neurophysiol. 40: 844–860.PubMedGoogle Scholar
  90. Maunsell, J. H. R., Nealey, T. A., and DePriest, D. D., 1990, Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey, J. Neurosci. 10: 3323–3334.PubMedGoogle Scholar
  91. Meeres, S. L., and Graves, R. E., 1990, Localization of unseen visual stimuli by humans with normal vision, Neuropsychologia 28: 1231–1237.PubMedCrossRefGoogle Scholar
  92. Michalski, A., Wimborne, B. M., and Henry, G. H., 1993, The effect of reversible cooling of cat’s primary visual cortex on the responses of area 21a neurons, J. Physiol. (London) 466: 133–156.Google Scholar
  93. Miller, E., 1984, Recovery and Management of Neuropsychological Impairments, Wiley, New York.Google Scholar
  94. Mizuno, N., Itoh, K., Uchida, K., Uemura-Sumi, M., and Matsushima, R., 1982, A retino-pulvinar projection in the macaque monkey as visualized by the use of anterograde transport of horseradish peroxidase, Neurosci. Lett. 30: 199–203.PubMedCrossRefGoogle Scholar
  95. Mizuno, N., Takahashi, O., Itoh, K., and Matsushima, R., 1983, Direct projections to the prestriate cortex from the retino-recipient zone of the inferior pulvinar nucleus in the macaque monkey, Neurosci. Lett. 43: 155–160.PubMedCrossRefGoogle Scholar
  96. Mohler, C. W., and Wurtz, R. H., 1977, Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys, J. Neurophysiol. 40: 74–94.PubMedGoogle Scholar
  97. Moors, J., and Vendrick, A. J. H., 1979, Responses of single units in the monkey superior colliculus to moving stimuli, Exp. Brain Res. 25: 349–369.Google Scholar
  98. Morel, A., and Bullier, J., 1990, Anatomical segregation of two cortical visual pathways in the macaque monkey, Visual Neurosci. 4: 555–578.CrossRefGoogle Scholar
  99. Murphy, E. H., and Chow, K. L., 1974, Effects of striate and occipital cortical lesions on visual discrimination in the rabbit, Exp. Neurol. 42: 78–88.PubMedCrossRefGoogle Scholar
  100. Nakagawa, S., and Tanaka, S., 1984, Retinal projections to the pulvinar nucleus of the macaque monkey: A re-investigation using autoradiography, Exp. Brain Res. 57: 151–157.PubMedCrossRefGoogle Scholar
  101. Orban, G. A., Lagae, L., Verri, A., Raiguel, S., Xiao, D., Maes, H., and Torre, V., 1992, First-order analysis of optical flow in monkey brain, Proc. Natl. Acad. Sci. USA 89: 2595–2599.PubMedCrossRefGoogle Scholar
  102. Partlow, G. D., Colonnier, M., and Szabo, J., 1977, Thalamic projections of the superior colliculus in the rhesus monkey Macaca mulatta. A light and electron microscopic study, J. Comp. Neural. 171: 285–318.CrossRefGoogle Scholar
  103. Pasik, P., Pasik, T., and Schider, P., 1969, Extrageniculostriate vision in the monkey: Discrimination of luminous flux-equated figures, Exp. Neurol. 24: 421–437.PubMedCrossRefGoogle Scholar
  104. Pasik, T., and Pasik, P., 1971, The visual world of monkeys deprived of striate cortex: Effective stimulus parameters and the importance of the accessory optic system, Vision Res. 3: 419–435.PubMedCrossRefGoogle Scholar
  105. Perenin, M. T., 1989, Visual motion processing in perimetrically blind fields, Eur. J. Neurosci. Suppl 2: 86–3Google Scholar
  106. Perenin, M. T., 1991, Discrimination of motion direction in perimetrically blind fields, Neuroreport 2: 397–400.PubMedCrossRefGoogle Scholar
  107. Perkel, D. J., Bullier, J., and Kennedy, H., 1986, Topography of the afferent connectivity of area 17 in the macaque monkey: A double-label study, J. Comp. Neurol. 253: 374–402.PubMedCrossRefGoogle Scholar
  108. Perrett, D. I., Smith, P. A. J., Mistlin, A. J., Chitty, A. J., Head, A. S., Potter, D. D., Broennimann, R., Milner, A. D., and Jeeves, M. A., 1985, Visual analysis of body motion by neurones in the temporal cortex of the macaque monkey: A preliminary report, Behav. Brain Res. 16: 153–170.PubMedCrossRefGoogle Scholar
  109. Petersen, S. E., Robinson, D. L., and Keys, W., 1985, Pulvinar nuclei of the behaving rhesus monkey: Visual responses and their modulation, J. Neurophysiol. 54: 867–886.PubMedGoogle Scholar
  110. Pettigrew, J. D., Ramachandran, V. S., and Bravo, H., 1984, Some neural connections subserving binocular vision in ungulates, Brain Behav. Evol. 24: 65–93.PubMedCrossRefGoogle Scholar
  111. Pizzamiglio, L., Antonucci, G., and Francia, A., 1984, Response of cortically blind hemifields to a moving visual scene, Cortex, 20: 89–99.PubMedCrossRefGoogle Scholar
  112. Pöppet, E., Held, R., and Frost, D., 1973, Residual visual function after brain wounds involving the central visual pathways in man, Nature 243: 295–296.CrossRefGoogle Scholar
  113. Raczkowski, D., and Rosenquist, A. C., 1980, (Connections of the parvocellular C laminae of the dorsal lateral geniculate nucleus with the visual cortex of the cat, Brain Res. 199: 447–451.PubMedCrossRefGoogle Scholar
  114. Raiguel, S. E., Lagae, L., Gulyas, B., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas V1, V2 and V5, Brain Res. 493: 155–159.PubMedCrossRefGoogle Scholar
  115. Riddoch, G., 1917, Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement, Brain 40: 15–57.CrossRefGoogle Scholar
  116. Robinson, D. A., 1975, Oculomotor control signals. Part III. Are saccades retinotopically or spatially organized? in: Basic Mechanisms of Ocular Motility and Their Clinical Implications (G. Lennerstrand and P. Bach-Y-Rita, eds.), Pergamon Press, New York, pp. 366–374.Google Scholar
  117. Robinson, D. L., McGlurkin, J. W., and Kertzman, G., 1990, Orbital position and eye movement influences on visual responses in the pulvinar nuclei of the behaving macaque, Exp. Brain Res. 82: 235–246.PubMedCrossRefGoogle Scholar
  118. Rocha-Miranda, C. E., Bender, D. B., Gross, G. G., and Mishkin, M., 1975, Visual activation of neurons in inferotemporal cortex depends on striate cortex and forebrain commissures, J. Neurophysiol. 38: 475–491.PubMedGoogle Scholar
  119. Rodman, H. R., Gross, G. G., and Albright, T. D., 1989, Afferent basis of visual response properties in area MT of the macaque: I. Effects of striate cortex removal, J. Neurosci. 9: 2033–2050.PubMedGoogle Scholar
  120. Rodman, H. R., Gross, G. G., and Albright, T. D., 1990, Afferent basis of visual response properties in area MT of the macaque. II. Effects of superior colliculus removal, J. Neurosci. 10: 1154–1164.PubMedGoogle Scholar
  121. Rosenquist, A. G., Edwards, S. B., and Palmer, L. A., 1974, An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat, Brain Res. 80: 71–93.PubMedCrossRefGoogle Scholar
  122. Saito, H. A., Yukie, M., Tanaka, K., Hikosaka, K., Fukuda, Y, and Iwai, E., 1986, Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey, J. Neurosci. 6: 145–157.PubMedGoogle Scholar
  123. Saito, H., Tanaka, K., Isono, H., Yasuda, M., and Mikami, A., 1989, Directionally selective response of cells in the middle temporal area (MT) of the macaque monkey to the movement of equiluminous opponent color stimuli, Exp. Brain Res. 75: 1–14.PubMedCrossRefGoogle Scholar
  124. Salin, P. A., Girard, P., Kennedy, H., and Bullier, J., 1992, The visuotopic organization of corticocortical connections in the visual system of the cat, J. Comp. Neurol. 320: 415–434.PubMedCrossRefGoogle Scholar
  125. Schilder, P., Pasik, P., and Pasik, T, 1972, Extrageniculostriate vision in the monkey. III. Gircle vs triangle and red vs green discrimination? Exp. Brain Res. 14: 436–448.PubMedCrossRefGoogle Scholar
  126. Schiller, P. H., and Malpeli, J. G., 1977, The effect of striate cortex cooling on area 18 cells in the monkey, Brain Res. 126: 366–369.PubMedCrossRefGoogle Scholar
  127. Schiller, P. H., Stryker, M., Cynader, M., and Berman, N., 1974, Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex, J. Neurophysiol. 37: 181–194.PubMedGoogle Scholar
  128. Schiller, P. H., Sandell, J. H., and Maunsell, J. H. R., 1987, The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey, J. Neurophysiol. 57: 1033–1049.PubMedGoogle Scholar
  129. Schiller, P. H., Logothetis, N. K., and Charles, E. R., 1990. Role of the color-opponent and broadband channels in vision, Visual Neurosci. 5: 321–346.CrossRefGoogle Scholar
  130. Schneider, G. E., 1967, Contrasting visuomotor functions of tectum and cortex in the golden hamster, Psychol. Forsch. 31: 52–62.PubMedCrossRefGoogle Scholar
  131. Seltzer, B., and Pandya, D. N., 1978, Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey, Brain Res. 149: 1–24.PubMedCrossRefGoogle Scholar
  132. Sherk, H., 1978, Area 18 cell responses in cat during reversible inactivation of area 17, J. Neurophysiol. 41: 204–215.PubMedGoogle Scholar
  133. Shipp, S., and Zeki, S. M., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.PubMedCrossRefGoogle Scholar
  134. Shipp, S., and Zeki, S., 1989, The organization of connections between areas V5 and V2 in macaque monkey visual cortex, Eur. J. Neurosci. 1: 333–354.PubMedCrossRefGoogle Scholar
  135. Solomon, S. J., Pasik, T, and Pasik, P., 1981, Extrageniculostriate vision in the monkey. VIII. Critical structures for spatial localization, Exp. Brain Res. 44: 259–270.PubMedCrossRefGoogle Scholar
  136. Spear, P. D., and Baumann, T. P., 1979, Effects of visual cortex removal on receptive field properties of cells in the lateral suprasylvian visual area of the cat, J. Neurophysiol. 42: 31–56.PubMedGoogle Scholar
  137. Sprague, J. M., 1966, Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat, Science 153: 1544–1547.PubMedCrossRefGoogle Scholar
  138. Sprague, J. M., Levy, J., DiBernardino, A., and Berlucchi, G., 1977, Visual cortical areas mediating form discrimination in the cat, J. Comp. Neurol. 172: 441–488.PubMedCrossRefGoogle Scholar
  139. Standage, G. P., and Benevento, L. A., 1983, The organization of connections between the pulvinar and visual area MT in the macaque monkey, Brain Res. 262: 288–294.PubMedCrossRefGoogle Scholar
  140. Stoerig, P., and Cowey, A., 1989, Wavelength sensitivity in blindsight, Nature 342: 916–917.PubMedCrossRefGoogle Scholar
  141. Stoerig, P., and Cowey, A., 1991, Increment-threshold spectral sensitivity in blindsight, Brain 114: 1487–1512.PubMedCrossRefGoogle Scholar
  142. Stoerig, P., and Cowey, A., 1992, Wavelength discrimination in blindsight, Brain 115: 425–444.PubMedCrossRefGoogle Scholar
  143. Stoerig, P., Cowey, A., and Bannister, M., 1991, Retinal ganglion cells that project to the pulvinar nucleus in macaque monkeys, Soc. Neurosci. Abstr. 282. 11Google Scholar
  144. Talbot, S. A., 1942, A lateral localization in the cat’s visual cortex. Fed. Proc. 1: 84.Google Scholar
  145. Tanaka, K., Fukuda, Y., and Saito, H.A., 1989, Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey, J. Neurophysiol. 62: 642–656.PubMedGoogle Scholar
  146. Torrealba, F., Partlow, G. D., and Guillery, R. W., 1981, Organization of the projection from the superior colliculus to the dorsal lateral geniculate nucleus of the cat, Neuroscience 6: 1341–1360.PubMedCrossRefGoogle Scholar
  147. Towns, L. C, Burton, S. L., Kimberly, C. J., and Fetterman, M. R., 1982, Projections of the dorsal lateral geniculate and lateral posterior nuclei to visual cortex in the rabbit, J. Comp. Neurol. 210: 87–98.PubMedCrossRefGoogle Scholar
  148. Trevarthen, C. B., 1968, Two mechanisms of vision in primates, Psychol. Forsch. 31: 299–337.PubMedCrossRefGoogle Scholar
  149. Ungerleider, L. G., and Desimone, R., 1986, Cortical connections of visual area MT in the macaque, J. Comp. Neurol. 248: 190–222.PubMedCrossRefGoogle Scholar
  150. Ungerleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in: Analysis of Visual Behavior (D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, Mass., pp. 549–586.Google Scholar
  151. Van Essen, D. C., and Zeki, S., 1978, The topographic organization of rhesus monkey prestriate cortex, J. Physiol. (London) 277: 193–226.Google Scholar
  152. von Monakow, C., 1914, Die Lokalisationim im Grosshirn und der Abbau Funktion durch Kortikale Herde, J. F. Bergmann, Wiesbaden.Google Scholar
  153. Weber, H., and Fischer, B., 1990, Effect of a local ibotenic acid lesion in the visual association area on the prelunate gyrus (area V4) on saccadic reaction times in trained rhesus monkeys, Exp. Brain Res. 81: 134–139.PubMedCrossRefGoogle Scholar
  154. Weiskrantz, L., 1963, Contour discrimination in a young monkey with striate cortex ablation, Neuropsychologia 1: 145–164.CrossRefGoogle Scholar
  155. Weiskrantz, L., 1986, Blindsight: A Case Study and Implications, Oxford Psychology Series, Volume 12, Oxford University Press, London.Google Scholar
  156. Weiskrantz, L., 1987, Residual vision in a scotoma (a follow-up study of “form” discrimination), Brain 110: 93–105.CrossRefGoogle Scholar
  157. West, J. R., Deadwyler, S. A., Cotman, C. W., and Lynch, G. S., 1976, An experimental test of diaschisis, Behav. Biol. 22: 419–425.CrossRefGoogle Scholar
  158. Yukie, M., and Iwaï, E., 1981, Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys, J. Cornp. Nenrol. 201: 81–97.CrossRefGoogle Scholar
  159. Zeki, S. M., 1978, The third visual complex of rhesus monkey prestriate cortex: The third visual complex of rhesus monkey prestriate cortex, J. Physiol (London) 277: 245–272.Google Scholar
  160. Zihl, J., 1980, “Blindsight”: Improvement of visually guided eye movements by systematic practice in patients with cerebral blindness, Neuropsychologia 18: 71–77.PubMedCrossRefGoogle Scholar
  161. Zihl, J., and Werth, R., 1984, Contributions to the study of blindsight. II. The role of specific practice for saccadic localization in patients with postgeniculate visual field defects, Neuropsychologia 22: 13–22.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jean Bullier
    • 1
  • Pascal Girard
    • 1
  • Paul-Antoine Salin
    • 1
  1. 1.Cerveau et VisionINSERM Unité 371Bron/LyonFrance

Personalised recommendations