Substrates for Interlaminar Connections in Area V1 of Macaque Monkey Cerebral Cortex

  • Jennifer S. Lund
  • Takashi Yoshioka
  • Jonathan B. Levitt
Part of the Cerebral Cortex book series (CECO, volume 10)


On the basis of our earlier studies of macaque visual cortical area V1 (Lund, 1973; Blasdel et al., 1985; Fitzpatrick et al., 1985) using Golgi impregnations and small intralaminar injections of horseradish peroxidase (HRP), a schema (reproduced here in Fig. 1) was outlined for spiny stellate neuron relays out of the thalamic recipient divisions of layer 4C (Lund, 1990). This diagram illustrates the finding that although the thalamic axons from magnocellular and parvocellular divisions of the lateral geniculate nucleus (LGN) terminate in the α and β divisions respectively of layer 4C (Hubel and Wiesel, 1972; Blasdel and Lund, 1983), the relays out of layer 4C seemed to fall into three sets. The lowermost set seemed to project in a very narrowly focused fashion to layer 4A and lower layer 3B, a set in the middle depth of layer 4C seemed to project to
Figure 1.

Diagram summarizing current information concerning the laminar distribution of thalamic inputs (to the left of diagram) from the lateral geniculate nucleus (LGN) to cortical area V1 in the macaque, and their further relays by thalamic recipient spiny stellate neurons of layer 4C. Thalamic axons P1 (to layer 4Cβ) and P2 (to layer 4A) appear to arise from different thalamic neuron populations, both situated in the LGN parvocellular laminae (Fitzpatrick et al., 1983; Blasdel and Lund, 1983). Thalamic axons M1 (to upper 4Cα) and M2 (terminals throughout 4Cα) arise from the magnocellular laminae of the LGN; axon population I, relaying to the upper layer blobs, comes from the intercalated layers of the LGN (Hendrickson et al., 1978; Fitzpatrick et al., 1983). The output from layer 4C is suggested to be a gradient, created by dendritic sampling of both parvocellular and magnocellular inputs by the postsynaptic spiny stellate neurons; 4C neurons are suggested to shift their projection target from layers 4A–3B to layer 4B as their primary LGN input shifts from the parvocellular layers to the magnocellular layers. (See Lund, 1990, for further discussion.) Diagram modified from Lund (1990) with permission.

both layers 3B and 4B with more spreading axon arbors, and an upper set seemed to project principally to layer 4B. It was suggested that this distribution of projections could derive from a gradient of sampling of the magnocellular and parvocellular afferents by continuously overlapped dendritic fields of spiny stellate neurons through the depth of layer 4C; the three efferent sets of cells in layer 4C were seen as partially overlapping in depth.


Pyramidal Neuron Superficial Layer Macaque Monkey Striate Cortex Middle Temporal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blasdel, G. G., and Fitzpatrick, D., 1984, Physiological organization of layer 4 in macaque striate cortex, J. Neurosci. 4: 880–895.PubMedGoogle Scholar
  2. Blasdel, G. G., and Lund, J. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3: 1389–1413.PubMedGoogle Scholar
  3. Blasdel, G. G., Lund, J. S., and Fitzpatrick, D., 1985, Intrinsic connections of macaque striate cortex: Axonal projections of cells outside lamina 4C, J. Neurosci. 5: 3350–3369.PubMedGoogle Scholar
  4. Blasdel, G. G., Yoshioka, T., Levitt, J. B., and Lund, J. S., 1992, Correlation between patterns of lateral connectivity and patterns of orientation preference in monkey striate cortex, Soc. Neurosci. Abstr. 18: 389.Google Scholar
  5. Dow, B. M., 1974, Functional classes of cells and their laminar distribution in monkey visual cortex, J. Neurophysiol. 37: 927–946.PubMedGoogle Scholar
  6. Dow, B. M., and Vautin, R. G., 1987, Horizontal segregation of color information in the middle layers of foveal striate cortex, J. Neurophysiol. 57: 712–739.PubMedGoogle Scholar
  7. Fairén, A., DeFelipe, J., and Regidor, J., 1984, Nonpyramidal neurons: General account, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 201–253.Google Scholar
  8. Fitzpatrick, D., Itoh, K., and Diamond, I. T., 1983, The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus), J. Neurosci. 3: 673–702.PubMedGoogle Scholar
  9. Fitzpatrick, D., Lund, J. S., and Blasdel, G. G., 1985, Intrinsic connections of macaque striate cortex: Afferent and efferent connections of lamina 4C, J. Neurosci. 5: 3329–3349.PubMedGoogle Scholar
  10. Gilbert, C. D., and Wiesel, T. N., 1989, Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex, J. Neurosci. 9: 2432–2442.PubMedGoogle Scholar
  11. Hawken, M. J., and Parker, A. J., 1984, Contrast sensitivity and orientation selectivity in lamina IV of the striate cortex of Old World monkeys, Exp. Brain Res. 54: 367–372.PubMedCrossRefGoogle Scholar
  12. Hawken, M. J., Parker, A. J., and Lund, J. S., 1988, Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey, J. Neurosci. 8: 3541–3548.PubMedGoogle Scholar
  13. Hendrickson, A. E., Wilson, J. R., and Ogren, M. P., 1978, The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in Old World and New World primates, J. Comp. Neurol. 182: 123–136.PubMedCrossRefGoogle Scholar
  14. Horikawa, K., and Armstrong, W.E., 1988, A versatile means of intracellular labeling: Injection of biocytin and its detection with avidin conjugates, Neurosci. Methods 25: 1–11.CrossRefGoogle Scholar
  15. Horton, J. C, and Hubel, D. H., 1981, Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey, Nature 292: 762–764.PubMedCrossRefGoogle Scholar
  16. Hubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci. 7: 3378–3415.PubMedGoogle Scholar
  17. Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol. 146: 421–450.PubMedCrossRefGoogle Scholar
  18. Hubel, D. H., and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. R. Soc. London Ser. B 198: 1–59.CrossRefGoogle Scholar
  19. Jones, E. G., and Hendry, S. H. C., 1984, Basket cells, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.). Plenum Press, New York, pp. 309–336.CrossRefGoogle Scholar
  20. King, M. A., Lewis, P. M., Hunter, B. E., and Walker, O. W., 1989, Biocytin: A versatile anterograde neuroanatomical tract-tracing alternative, Brain Res. 497: 361–367.PubMedCrossRefGoogle Scholar
  21. Lachica, E. A., Mavity-Hudson, E. A., and Casagrande, V. A., 1991, Morphological details of primate axons and dendrites revealed by extracellular injection of biocytin: An economic and reliable alternative to PHA-L, Brain Res. 564: 1–11.PubMedCrossRefGoogle Scholar
  22. Lachica, E. A., Beck, P. D., and Casagrande, V. A., 1992, Parallel channels in macaque monkey striate cortex: Anatomically defined columns in layer III, Proc. Natl. Acad. Sci. USA 89: 3566–3570.PubMedCrossRefGoogle Scholar
  23. Lennie, P., Krauskopf, J., and Sclar, G., 1990, Chromatic mechanisms in striate cortex of macaque, J. Neurosci. 10: 649–669.PubMedGoogle Scholar
  24. Levitt, J. B., Yoshioka, T., and Lund, J. S., 1994, Intrinsic cortical connections in macaque visual area V2: evidence for interaction between different functional streams. J. Comp. Neurol., in press.Google Scholar
  25. Livingstone, M. S., and Hubel, D. H., 1982, Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79: 6098–6101.PubMedCrossRefGoogle Scholar
  26. Livingstone, M. S., and Hubel, D. H., 1984a, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  27. Livingstone, M. S., and Hubel, D. H., 1984b, Specificity of intrinsic connections in primate primary visual cortex, J. Neurosci. 4: 2830–2835.PubMedGoogle Scholar
  28. Livingstone, M. S., and Hubel, D. H., 1987, Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7: 3371–3377.PubMedGoogle Scholar
  29. Livingstone, M. S., and Hubel, D. H., 1988, Segregation of form, color, movement, and depth: Anatomy, physiology, and perception, Science 240: 740–749.PubMedCrossRefGoogle Scholar
  30. Lund, J. S., 1973, Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta), J. Comp. Neurol. 147: 455–496.PubMedCrossRefGoogle Scholar
  31. Lund, J. S., 1987, Local circuit neurons of macaque monkey striate cortex: I. Neurons of laminae 4C and 5A, J. Comp. Neurol. 257: 60–92.PubMedCrossRefGoogle Scholar
  32. Lund, J. S., 1990, Excitatory and inhibitory circuitry and laminar mapping strategies in the primary visual cortex of the monkey, in: Signal and Sense: Local and Global Order in Perceptual Maps (G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley, New York, pp. 51–66.Google Scholar
  33. Lund, J. S., and Boothe, R., 1975, Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey, J. Comp. Neurol. 159: 305–334.CrossRefGoogle Scholar
  34. Lund, J. S., and Yoshioka, T., 1991, Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B, J. Comp. Neurol. 311: 234–258.PubMedCrossRefGoogle Scholar
  35. Lund, J. S., Lund, R. D., Hendrickson, A. H., Bunt, A. H., and Fuchs, A. F., 1975, The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase, J. Comp. Neurol. 164: 287–304.PubMedCrossRefGoogle Scholar
  36. Lund, J. S., Hawken, M. J., and Parker, A. J., 1988, Local circuit neurons of macaque monkey striate cortex: II. Neurons of laminae 5B and 6, J. Comp. Neurol. 276: 1–29.PubMedCrossRefGoogle Scholar
  37. Lund, J. S., Yoshioka, T., and Levitt, J. B., 1993, Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex, Cereb. Cortex 3:148–162.PubMedCrossRefGoogle Scholar
  38. Malach, R., Amir, Y, Bartfeld, E., and Grinvald, A., 1992, Biocytin injections, guided by optical imaging, reveal relationships between functional architecture and intrinsic connections in monkey visual cortex, Soc. Neurosci. Abstr. 18: 389.Google Scholar
  39. Malpeli, J. G., Schiller, P. H., and Colby, C. L., 1981, Response properties of single cells in monkey striate cortex during reversible inactivation of individual lateral geniculate laminae, J. Neurophysiol. 46: 1102–1119.PubMedGoogle Scholar
  40. Matsubara, J. A., Cynader, M. S., and Swindale, N. V., 1987, Anatomical properties and physiological correlates of the intrinsic connections in cat area 18, J. Neurosci. 7: 1428–1446.PubMedGoogle Scholar
  41. Maunsell, J. H. R., Nealey, T. A., and DePriest, D. D., 1990, Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey, J. Neurosci. 10: 3323–3334.PubMedGoogle Scholar
  42. Michael, C. R., 1985, Laminar segregation of color cells in the monkey’s striate cortex, Vision Res. 25: 415–423.PubMedCrossRefGoogle Scholar
  43. Movshon, J. A., and Newsome, W. T., 1984, Functional characteristics of striate cortical neurons projecting to MT in the macaque, Soc. Neurosci. Abstr. 10: 933.Google Scholar
  44. Nealey, T. A., Ferrera, V. P., and Maunsell, J. H. R., 1991, Magnocellular and parvocellular contributions to the ventral extrastriate cortical processing stream, Soc. Neurosci. Abstr. 17: 525.Google Scholar
  45. Peters, A., 1984, Chandelier cells, in: Cerebral Cortex, Volume 1 (A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 361–380.Google Scholar
  46. Rockland, K. S., 1992, Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey, Cereb. Cortex 2: 353–374.PubMedCrossRefGoogle Scholar
  47. Shipp, S., and Zeki, S., 1989, The organization of connections between areas V5 and V1 in macaque monkey visual cortex, Eur. J. Neurosci. 1: 309–332.PubMedCrossRefGoogle Scholar
  48. Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., De Valois, R. L., and Switkes, E., 1988a, Functional anatomy of macaque striate cortex. III. Color, J. Neurosci. 8: 1569–1593.PubMedGoogle Scholar
  49. Tootell, R. B. H., Hamilton, S. L., and Switkes, E., 1988b, Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams, J. Neurosci. 8: 1594–1609.PubMedGoogle Scholar
  50. Ts’o, D. Y., and Gilbert, C. D., 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.Google Scholar
  51. Ts’o, D. Y., Gilbert, C. D., and Wiesel, T.N., 1986, Relationships between horizontal connections and functional architecture in cat striate cortex as revealed by cross-correlation analysis, J. Neurosci. 6: 1160–1170.Google Scholar
  52. Van Essen, D. C., Felleman, D. J., DeYoe, E. A., Olavarria, J., and Knierim, J., 1990, Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey, Cold Spring Harbor Symp. Quant. Biol. 55: 679–696.PubMedCrossRefGoogle Scholar
  53. Yoshioka, T, 1989, Color and luminance organization in visual cortical areas V1, V2, and V4 of the macaque monkey, Ph.D. thesis, SUNY at Buffalo.Google Scholar
  54. Yoshioka, T, Blasdel, G. G., Levitt, J. B., and Lund, J. S. 1992. Patterns of lateral connections in macaque visual area V1 revealed by biocytin histochemistry and functional imaging. Soc. Neurosci. Abstr. 18: 299.Google Scholar
  55. Yoshioka, T, Levitt, J. B., and Lund, J. S., 1994, Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: anatomy of interlaminar projections, Vis. Neurosci., in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jennifer S. Lund
    • 1
  • Takashi Yoshioka
    • 2
  • Jonathan B. Levitt
    • 1
  1. 1.Department of Visual Science, Institute of OphthalmologyUniversity of LondonLondonEngland
  2. 2.Krieger Mind/Brain InstituteJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations