Motion Processing in Monkey Striate Cortex

  • Guy A. Orban
Part of the Cerebral Cortex book series (CECO, volume 10)


Motion processing, i.e., the processing of retinal image movement, is of great importance for primates (for review, see, e.g., Nakayama, 1985). In fact, motion processing could be considered fundamental to vision since retinal images are always moving as a result of micro eye movements, essential for visual perception. However, retinal image motion, whether generated by micro or macro eye movements, including pursuit and saccades, contains no information about the outside world. This is not the case for retinal image motion generated by the subject’s own movements. The spatiotemporal changes in the retinal light distribution induced by relative movement between the observer and the environment, generated either by object motion or by self motion, are referred to as optic flow. Optic flow is a rich source of information about the outside world. It provides information about the 3-D trajectory of moving objects of the moving subject as well as about the 3-D structure of the environment. Furthermore, motion is a clear signal for image segmentation and perceptual grouping. In addition to its many perceptual uses, retinal motion also contributes to the control of eye movements, saccades as well as pursuit and optokinetic nystagmus. The term motion processing generally refers to the analysis of retinal image motion inasmuch as this leads to control of eye position and to extraction of information about the outside world.


Motion Processing Striate Cortex Middle Temporal Direction Index Contrast Polarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albright, T. D., 1984, Direction and orientation selectivity of neurons in visual area MT of the macaque, J. Neurophysiol. 52: 1106–1130.PubMedGoogle Scholar
  2. Albright, T. D., 1992, Form-cue invariant motion processing in primate visual cortex, Science 255: 1141–1143.PubMedCrossRefGoogle Scholar
  3. Albus, K., 1980, The detection of movement direction and effects of contrast reversal in the cat’s striate cortex, Vision Res. 20: 289–293.PubMedCrossRefGoogle Scholar
  4. Allman, J., Miezin, F., and McGuinness, E., 1985, Direction-and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT), Perception 14: 105–126.PubMedCrossRefGoogle Scholar
  5. Allman, J., Miezin, F., and McGuinness, E., 1990, Effects of background motion on the responses of neurons in the first and second cortical visual areas, in: Signal and Sense: Local and Global Order in Perceptual Maps (G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley-Liss, New York, pp. 131–141.Google Scholar
  6. Baker, J., Petersen, S., Newsome, W., and Allman, J., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral and middle temporal areas, J. Neurophysiol. 45: 397–416.PubMedGoogle Scholar
  7. Bender, D. B., and Davidson, R. M., 1986, Global visual processing in the monkey superior colliculus, Brain Res. 381: 372–375.PubMedCrossRefGoogle Scholar
  8. Campbell, F. W., Cleland, B. G., Cooper, G. F., and Enroth-Cugell, C., 1968, The angular selectivity of visual cortical cells to moving gratings, J. Physiol. (London) 198: 237–250.Google Scholar
  9. De Valois, R. L., Yund, E. W., and Hepler, N., 1982, The orientation and direction selectivity of cells in macaque visual cortex, Vision Res. 22: 531–544.PubMedCrossRefGoogle Scholar
  10. Dow, B. M., 1974, Functional classes of cells and their laminar distribution in monkey visual cortex, J. Neurophysiol. 37: 927–946.PubMedGoogle Scholar
  11. Duysens, J., Orban, G. A., van der Glas, H. W., and de Zegher, F. E., 1982, Functional properties of area 19 as compared to area 17 of the cat, Brain Res. 231: 279–291.PubMedCrossRefGoogle Scholar
  12. Duysens, J., Orban, G. A., Cremieux, J., and Maes, H., 1985, Velocity selectivity in the cat visual system. III. Contribution of temporal factors, J. Neurophysiol. 54: 1068–1083.PubMedGoogle Scholar
  13. Duysens, J., Maes, H., and Orban, G. A., 1987, The velocity dependence of direction selectivity of visual cortical neurones in the cat, J. Physiol. (London) 387: 95–113.Google Scholar
  14. Foster, K. H., Gaska, J. P., Nagler, M., and Pollen, D. A., 1985, Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey, J. Physiol. (London) 365: 331–363.Google Scholar
  15. Galletti, C., Squatrito, S., Battaglini, P. P., and Maioli, M. G., 1984, ‘Real-motion’ cells in the primary visual cortex of macaque monkeys, Brain Res. 301: 95–110.PubMedCrossRefGoogle Scholar
  16. Gilbert, C. D., and Wiesel, T. N., 1983, Clustered intrinsic connections in cat visual cortex, J. Neurosci. 3: 1116–1133.PubMedGoogle Scholar
  17. Girard, P., Salin, P. A., and Bullier, J., 1991, Visual activity in areas V3a and V3 during reversible inactivation of area VI in the macaque monkey, J. Neurophysiol. 66: 1493–1503.PubMedGoogle Scholar
  18. Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area-MT of the macaque monkey during reversible inactivation of area-Vl, J. Neurophysiol. 67: 1437–1446.PubMedGoogle Scholar
  19. Gulyás, B., Orban, G. A., and Spileers, W., 1987, A moving noise background modulates responses of striate neurones to moving bars in the cat but not in the monkey, J. Physiol. (London) 390: 28P.Google Scholar
  20. Hamilton, D. B., Albrecht, D. G., and Geisler, W. S., 1989, Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function, Vision Res. 29: 1285–1308.PubMedCrossRefGoogle Scholar
  21. Hammond, P., and MacKay, D. M., 1975, Differential responses of cat visual cortical cells to textured stimuli, Exp. Brain Res. 22: 427–430.CrossRefGoogle Scholar
  22. Hawken, M. J., Parker, A. J., and Lund, J. S., 1988, Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the Old World monkey, J. Neurosci. 8: 3541–3548.PubMedGoogle Scholar
  23. Henry, G. H., Bishop, P. O., and Dreher, B., 1974, Orientation, axis and direction as stimulus parameters for striate cells, Vision Res. 14: 767–777.PubMedCrossRefGoogle Scholar
  24. Hubel, D. H., and Wiesel, T. N., 1959, Receptive fields of single neurones in the cat’s striate cortex, J. Physiol. (London) 148: 574–591.Google Scholar
  25. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (London) 195: 215–243.Google Scholar
  26. Jacobs, G. H., and Deegan, J. F., 1992, Cone photopigments in nocturnal and diurnal procyonids, J. Comp. Physiol. 171: 351–358.CrossRefGoogle Scholar
  27. Kato, H., Bishop, P. O., and Orban, G. A., 1978, Hypercomplex and the simple/complex cell classification in cat striate cortex, J. Neurophysiol. 41: 1071–1095.PubMedGoogle Scholar
  28. Lagae, L., Gulyás, B., Raiguel, S., and Orban, G. A., 1989, Laminar analysis of motion information processing in macaque V5, Brain Res. 496: 361–367.PubMedCrossRefGoogle Scholar
  29. Lagae, L., Raiguel, S., Xiao, D., and Orban, G. A., 1990, Surround properties of MT neurons show laminar organization, Soc. Neurosci. Abstr. 16: 6.Google Scholar
  30. Lagae, L., Raiguel, S., and Orban, G. A., 1993, Speed and direction selectivity of macaque middle temporal (MT) neurons, J. Neurophysiol. 69: 19–39.PubMedGoogle Scholar
  31. Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  32. Logothetis, N. K., and Charles, E. R., 1990, V4 responses to gratings defined by random dot motion, Invest. Ophthalmol. Visual Sci. 31(4): 90.Google Scholar
  33. Loop, M. S., Millican, C. L., and Thomas, S. R., 1987, Photopic spectral sensitivity of the cat, J. Physiol. (London) 382: 537–553.Google Scholar
  34. Lund, J. S., 1973, Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta), J. Comp. Neurol. 147: 455–496.PubMedCrossRefGoogle Scholar
  35. Lund, J. S., 1988, Anatomical organization of macaque monkey striate visual cortex, Annu. Rev. Neurosci. 11: 253–288.PubMedCrossRefGoogle Scholar
  36. Marcar, V. L., and Cowey, A., 1992, The effect of removing superior temporal cortical motion areas in the macaque monkey: II) Motion discrimination using random dot displays, Eur. J. Neurosci. 4: 1228–1238.PubMedCrossRefGoogle Scholar
  37. Marcar, V. L., Raiguel, S. E., Xiao, D., Maes, H., and Orban, G. A., 1991, Do cells in area MT code the orientation of a kinetic boundary? Soc. Neurosci. Abstr. 17: 525.Google Scholar
  38. Marcar, V. L., Raiguel, S. E., Xiao, D., Maes, H., and Orban, G. A., 1992, Do cells in area V2 respond to the orientation of kinetic boundaries? Soc. Neurosci. Abstr. 18: 1275.Google Scholar
  39. Maunsell, J. H. R., and Newsome, W. T, 1987, Visual processing in monkey extrastriate cortex, Annu. Rev. Neurosci. 10: 363–401.PubMedCrossRefGoogle Scholar
  40. Mikami, A., Newsome, W. T, and Wurtz, R. H., 1986, Motion selectivity in macaque visual cortex. II. Spatiotemporal range of directional interactions in MT and Vl, J. Neurophysiol. 55: 1328–1339.PubMedGoogle Scholar
  41. Movshon, J. A., 1975, The velocity tuning of single units in cat striate cortex, J. Physiol. (London) 249: 445–468.Google Scholar
  42. Movshon, J. A., and Newsome, W. T, 1984, Functional characteristics of striate cortical neurons projecting to MT in the macaque, Soc. Neurosci. Abstr. 10: 933.Google Scholar
  43. Movshon, J. A., Adelson, E. H., Gizzi, M. S., and Newsome, W. T., 1985, The analysis of moving visual patterns, in: Pattern Recognition Mechanisms (C. Chagas, R. Gattass, and C. Gross, eds.), Pontifical Academy of Sciences, Vatican City, pp. 117–151.Google Scholar
  44. Nakayama, K., 1985, Biological image motion processing: A review, Vision Res. 25: 625–660.PubMedCrossRefGoogle Scholar
  45. Newsome, W. T., and Paré, E. B., 1988, A selective impairment of motion perception following lesions of the middle temporal visual area (MT), J. Neurosci. 8: 2201–2211.PubMedGoogle Scholar
  46. Olavarria, J. F., DeYoe, E. A., Knierim, J. J., Fox, J. M., and Van Essen, D. C., 1992, Neural responses to visual texture patterns in middle temporal area of the macaque monkey, J. Neurophysiol. 68: 164–181.PubMedGoogle Scholar
  47. Orban, G. A., 1985, Velocity tuned cortical cells and human velocity discrimination, in: Brain Mechanisms and Spatial Vision (D. J. Ingle, M. Jeannerod, and D. N. Lee, eds.), Nijhoff, The Hague, pp. 371–388.CrossRefGoogle Scholar
  48. Orban, G. A., 1986, Processing of images in the geniculocortical pathway, in: Visual Neuroscience (J. D. Pettigrew, K. J. Sanderson, and W. R. Levick, eds.), Cambridge University Press, London, pp. 121–141.Google Scholar
  49. Orban, G. A., 1991, Quantitative electrophysiology of visual cortical neurones, in: Vision and Visual Dysfunction, Volume 4 (J. Cronly-Dillon, gen. ed., and A. G. Leventhal, ed.), Macmillan & Co., London, pp. 173–222.Google Scholar
  50. Orban, G. A., 1992, The analysis of motion signals and the nature of processing in the primate visual system, in: Artificial and Biological Vision Systems (G. A. Orban and H. H. Nagel, eds.), Springer-Verlag, Berlin, pp. 24–56.CrossRefGoogle Scholar
  51. Orban, G. A., Callens, M., and Colle, J., 1975, Unit responses to moving stimuli in area 18 of the cat, Brain Res. 90: 205–219.PubMedCrossRefGoogle Scholar
  52. Orban, G. A., Kennedy, H., and Maes, H., 1981a, Response to movement of neurons in areas 17 and 18 of the cat: Velocity sensitivity, J. Neurophysiol. 45: 1043–1058.PubMedGoogle Scholar
  53. Orban, G. A., Kennedy, H., and Maes, H., 1981b, Response to movement of neurons in areas 17 and 18 of the cat: Direction selectivity, J. Neurophysiol. 45: 1059–1073.PubMedGoogle Scholar
  54. Orban, G. A., Hoffmann, K.-P., and Duysens, J., 1985, Velocity selectivity in the cat visual system. I. Responses of LGN cells to moving bar stimuli: A comparison with cortical areas 17 and 18, J. Neurophysiol. 54: 1026–1049.PubMedGoogle Scholar
  55. Orban, G. A., Kennedy, H., and Bullier, J., 1986, Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: Influence of eccentricity, J. Neurophysiol. 56: 462–480.PubMedGoogle Scholar
  56. Orban, G. A., Gulyás, B., and Vogels, R., 1987, Influence of a moving textured background on direction selectivity of cat striate neurons, J. Neurophysiol. 57: 1792–1812.PubMedGoogle Scholar
  57. Orban, G. A., Lagae, L., Raiguel, S., Gulyás, B., and Maes, H., 1989, Analysis of complex motion signals in the brain of cats and monkey, in: Models of Brain Function (R. M. J. Cotterill, ed.), Cambridge University Press, London, pp. 151–165.Google Scholar
  58. Poggio, G. F., Doty, R. W., Jr., and Talbot, W. H., 1977, Foveal striate cortex of behaving monkey: Single-neuron responses to square-wave gratings during fixation of gaze, J. Neurophysiol. 40: 1369–1391.PubMedGoogle Scholar
  59. Raiguel, S. E., Lagae, L., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas V1, V2 and V5, Brain Res. 493: 155–159.PubMedCrossRefGoogle Scholar
  60. Reid, R. C., Soodak, R. E., and Shapley, R. M., 1987, Linear mechanisms of directional selectivity in simple cells of cat striate cortex, Proc. Natl. Acad. Sci. USA 84: 8740–8744.PubMedCrossRefGoogle Scholar
  61. Rockland, K. S., and Lund, J. S., 1983, Intrinsic laminar lattice connections in primate visual cortex. J. Comp. Neurol. 216: 303–318.PubMedCrossRefGoogle Scholar
  62. Rodman, H. R., and Albright, T. D., 1987, Coding of visual stimulus velocity in area MT of the macaque, Vision Res. 27: 2035–2048.PubMedCrossRefGoogle Scholar
  63. Rodman, H. R., Gross, C. G., and Albright, T. D., 1989, Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal, J. Neurosci. 9: 2033–2050.PubMedGoogle Scholar
  64. Schiller, P. H., Finlay, B. L., and Volman, S. F., 1976a, Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields, J. Neurophysiol. 39: 1288–1319.PubMedGoogle Scholar
  65. Schiller, P. H., Finlay, B. L., and Volman, S. F., 1976b, Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance, J. Neurophysiol. 39: 1320–1333.PubMedGoogle Scholar
  66. Skavenski, A. A., Robinson, D. A., Steinman, R. M., and Timberlake, G. T., 1975, Miniature eye movements of fixation in rhesus monkey, Vision Res. 15: 1269–1273.PubMedCrossRefGoogle Scholar
  67. Snowden, R. J., Treue, S., Erickson, R. G., and Andersen, R. A., 1991, The response of area MT and VI neurons to transparent motion, J. Neurosci. 11: 2768–2785.PubMedGoogle Scholar
  68. Snowden, R. J., Treue, S., and Andersen, R. A., 1992, The response of neurons in areas VI and MT of the alert rhesus monkey to moving random dot patterns, Exp. Brain Res. 88: 389–400.PubMedCrossRefGoogle Scholar
  69. Tanaka, K., Hikosaka, H., Saito, H., Yukie, Y., Fukada, Y, and Iwai, E., 1986, Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey, J. Neurosci. 6: 134–144.PubMedGoogle Scholar
  70. Ts’o, D. Y, and Gilbert, C. D., 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.Google Scholar
  71. Vandenbussche, E., Saunders, R. C., and Orban, G. A., 1991, Lesions of MT impair speed discrimination performance in the Japanese monkeys (Macaca fuscata), Soc. Neurosci. Abstr. 17: 8.Google Scholar
  72. Van Essen, D. C., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex (A. A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 259–329.Google Scholar
  73. Van Essen, D. C., Anderson, C. H., and Felleman, D. J., 1992, Information processing in the primate visual system: An integrated systems perspective, Science 255: 419–423.PubMedCrossRefGoogle Scholar
  74. Vogels, R., and Orban, G. A., 1990, How well do response changes of striate neurons signal differences in orientation: A study in the discriminating monkey, J. Neurosci. 10: 3543–3558.PubMedGoogle Scholar
  75. Vogels, R., Spileers, W., and Orban, G. A., 1989, The response variability of striate cortical neurons in the behaving monkey, Exp. Brain Res. 77: 432–436.PubMedCrossRefGoogle Scholar
  76. Vogels, R., Sáry, G., and Orban, G. A., 1992, Responses of inferotemporal units to luminance, kinetic and texture boundaries, Invest. Ophthalmol. Visual Sci. 33(4): 1131.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Guy A. Orban
    • 1
  1. 1.Laboratorium voor Neuro- en PsychofysiologieK.U. Leuven, Medical SchoolLeuvenBelgium

Personalised recommendations