Visual Processing in Macaque Area MT/V5 and Its Satellites (MSTd and MSTv)

  • Guy A. Orban
Part of the Cerebral Cortex book series (CECO, volume 12)

Abstract

It is now well established that monkey extrastriate cortex, the visual cortex beyond primary or striate cortex, contains many different areas (for review, see Van Essen et al., 1992; Felleman and Van Essen, 1991). Of these 30 or so extra-striate areas, a small group in the caudal superior temporal sulcus (STS) stands out because their neurons share the property of direction selectivity, suggesting that these areas might be involved in the analysis of retinal motion and in motion perception. A large number of studies have been devoted to substantiating and clarifying the role of the middle temporal (MT) area, also referred to as V5, and that of its satellites, the dorsal and ventral parts of the medial superior temporal (MST) visual area. Although area MT/V5 was discovered almost simultaneously in macaque monkeys (Zeki, 1969, 1971) and in owl monkeys (Allman and Kaas, 1971) and there are a number of similarities between these areas of the two species, this review will be restricted to the macaque monkey. Indeed, with the passage of time, differences between MT of the two species have become apparent (Sereno and Allman, 1991; Zeki, 1980) and the macaque as a species is closer to the human (Ciochon and Chiarelli, 1980). A further restriction will be that for the physiological studies preference will be given to the more recent, quantitative data. Since the physiology of macaque visual cortex, and particularly of area MT/V5 and its satellites, has been a major source of inspiration for recent human functional imaging work, the homologues of MT/V5 and MST in humans will be briefly discussed.

Keywords

Motion Perception Macaque Monkey Striate Cortex Superior Temporal Sulcus Direction Selectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelson, E. H., and Movshon, J. A., 1982, Phenomenal coherence of moving visual patterns, Nature 300: 523–525.PubMedGoogle Scholar
  2. Albright, T. D., 1984, Direction and orientation selectivity of neurons in visual area MT of the macaque, J. Neurophysiol. 52: 1106–1130.PubMedGoogle Scholar
  3. Albright, T. D., 1989, Centrifugal directional bias in the middle temporal visual area (MT) of the macaque, Visual Neurosci. 2: 177–188.Google Scholar
  4. Albright, T. D., 1992, Form-cue invariant motion processing in primate visual cortex, Science 255: 1141–1143.PubMedGoogle Scholar
  5. Albright, T. D., 1993, Cortical processing of visual motion, in: Visual Motion and its Role in the Stabilization of Gaze ( F. A. Miles, and J. Wallman, eds.), Elsevier, Amsterdam, pp. 177–201.Google Scholar
  6. Albright, T. D., and Desimone, R., 1987, Local precision of visuotopic organization in the middle temporal area (M-r) of the macaque, Exp. Brain Res. 65: 582–592.PubMedGoogle Scholar
  7. Albright, T. D., Desimone, R., and Gross, C. G., 1984, Columnar organization of directionally selective cells in visual area MT of the macaque, J. Neurophysiol. 51: 16–31.PubMedGoogle Scholar
  8. Allman, J. M., and Kaas, J. H., 1971, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus), Brain Res. 31: 85–105.PubMedGoogle Scholar
  9. Allman, J., Miezin, F., and McGuinness, E. L., 1985, Direction-and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT), Perception 14: 105–126.PubMedGoogle Scholar
  10. Andersen, R. A., Essick, G. K., and Siegel, R. M., 1985, Encoding of spatial location by posterior parietal neurons, Science 230: 456–458.PubMedGoogle Scholar
  11. Bair, W., Koch, C., Newsome, W., and Britten, K., 1994, Power spectrum analysis of bursting cells in area MT in the behaving monkey, J. Neurosci. 14: 2870–2892.PubMedGoogle Scholar
  12. Baker, J. F., Petersen, S. E., Newsome, W. T., and Allman, J. M., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus), J. Neurophysiol. 45: 397–416.PubMedGoogle Scholar
  13. Born, R. T., and Tootell, R. B. H., 1992, Segregation of global and local motion processing in primate middle temporal visual area, Nature 357: 497–499.PubMedGoogle Scholar
  14. Boussaoud, D., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque,/ Comp. Neurol. 296: 462–495.Google Scholar
  15. Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1992, Subcortical connections of visual areas MST and EST in macaques, Visual Neurosci. 9: 291–302.Google Scholar
  16. Bradley, A., Skottun, B. C., Ohzawa, 1., Sclar, G., and Freeman, R. D., 1987, Visual orientation and spatial frequency discrimination: A comparison of single cells and behavior, J. Neurophysiol. 57: 755–772.Google Scholar
  17. Bradley, D. C., Qian, N., and Andersen, R. A., 1995, Integration of motion and stereopsis in middle temporal cortical area of macaques, Nalure 373: 609–611.Google Scholar
  18. Bremmer, F., llg, U. J., Thiele, A., and Hoffmann, K.-P., 1996, Eye position effects in monkey cortex, I: Visual and pursuit related activity in extrastriate areas MT and MST,/ Neurophysiol.,in press.Google Scholar
  19. Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A., 1992, The analysis of visual motion: A comparison of neuronal and psychophysical performance, J. Neurosci. 12: 4745–4765.Google Scholar
  20. Britten, K. H., Shadlen, M. N., Newsome, W. T., and Movshon, J. A., 1993, Responses of neurons in macaque MT to stochastic motion signals, Visual Neurosci. 10: 1157–1169.Google Scholar
  21. Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., and Movshon, J. A., 1996, A relationship between behavioral choice and the visual responses of neurons in macaque MT, Visual Neurosci. 13: 87–100.Google Scholar
  22. Buracas, G. T., and Albright, “F. D., 1994, ‘Elie role of MT neuron receptive field surrounds in computing object shape from velocity fields, Adv. Neural Information Processing Syst. 6: 969–976.Google Scholar
  23. Buracas, G. T., and Albright, “F. D., 1996, Contribution of area MT to perception of three-dimensional shape: A computational study, Vision Res. 36: 869–888.Google Scholar
  24. Cavanagh, P., and Mathers, G., 1989, Motion: The long and short of it, Spatial Vis. 4:103–129. Celebrini, S., and Newsome, W. T., 1994, Neuronal and psychophysical sensitivity to notion signals in extrastriate area MST of the macaque monkey,]. Neurosci. 14: 4109–4124.Google Scholar
  25. Celebrini, S., and Newsome, W. T., 1995, Microstimulation of extrastriate area MST influences performance on a direction discrimination task, J. Neurophysiol. 73: 437–448.PubMedGoogle Scholar
  26. Cheng, K., Hasegawa, T., Saleem, K. S., and Tanaka, K., 1994, Comparison of neuronal selectivity for stimulus speed, length, and contrast in the prestriate visual cortical areas V4 and MT of the macaque monkey,]. Neurophysiol. 71: 2269–2280.Google Scholar
  27. Cheng, K., Fujita, H., Kanno, I., Miura, S., and Tanaka, K., 1995, Human cortical regions activated by wide-field visual motion: An H2’50 PEE study,]. Neurophysiol. 74: 413–427.Google Scholar
  28. Chubb, C., and Sperling, G., 1988, Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception, ]. Opt. Soc. Am. A 5: 1986–2006.Google Scholar
  29. Ciochon, R. L., and Chiarelli, A. B., 1980, Evolutionary Biology of the New World Monkeys and Continental Drift, Plenum Press, New York.Google Scholar
  30. Clarke, S., and Miklossy, J., 1990, Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas,]. Comp. Neurol. 298: 188–214.Google Scholar
  31. Cowey, A., and Marcar, V. I.., 1992, The effect of removing superior temporal cortical motion areas in the macaque monkey: I. Motion discrimination using simple dots, Eur. J. Neurosci. 4: 1219–1227.PubMedGoogle Scholar
  32. Cragg, B. G., 1969, The topography of the afferent projections in circumstriate visual cortex of the monkey studied by the Nauta method, Vision Res., 9: 733–747.PubMedGoogle Scholar
  33. Dale, A. M., Ahlfors, S. P., Aronen, H. J., Belliveau, J. W., Huotilainen, M., Ilmoniemi, R. J., Kennedy, W. A., Korvenoja, A., Liu, A. K., Reppas, J. B., Rosen, B. R., Sereno, M. I., Simpson, G. V., Standertskjöld-Nordenstam, C.-G., Virtanen, J., and Tootell, R. B. H., 1995, Spatiotemporal imaging of coherent motion selective areas in human cortex, Soc. Neurosci. Ahstr. 21: 1275.Google Scholar
  34. Dean, A. F., 1981, The variability of discharge of simple cells in cat striate cortex, Exp. Brain Res. 44: 437–440.PubMedGoogle Scholar
  35. Decety, J., Perani, D., Jeannerod, M., Bettinardi, V., ‘Eadary, B., Woods, R., Mazziotta, J. C., and Fazio, F., 1994, Mapping motor representations with positron emission tomography, Nature 371: 600–602.Google Scholar
  36. Desimone, R., and Ungerlcider, L. G., 1986, Multiple visual areas in the caudal superior temporal sulcus of the macaque, J. Comp. Neural. 248: 164–189.Google Scholar
  37. DeYoe, E. G., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.PubMedGoogle Scholar
  38. Dobkins, K. R., and Albright, T. 1)., 1994, What happens if it changes color when it moves? The nature of chromatic input to macaque visual area MT, /. Neurosci. 14: 4854–4870.Google Scholar
  39. Dobkins, K. R., and Albright, T. D., 1995, Behavioral and neural effects of chromatic isoluminance in the primate visual motion system, Visual Neurosci. 12: 321–332.Google Scholar
  40. Droulez, J., and Cornilleau-Pérès, V., 1990, Visual perception of surface curvature. The species variation and its physiological implications, Biol. Cybernet. 62: 211–224.Google Scholar
  41. Dubner, R., and Zeki, S. M., 1971, Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey, Brain Res. 35: 528–532.PubMedGoogle Scholar
  42. Duffy, C. J., and Wurtz, R. H., 1991a, Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli,/ Neurophysiol 65: 1329–1345.Google Scholar
  43. Duffy, C. J., and Wurtz, R. H., 1991b, Sensitivity of MST neurons to optic flow stimuli. II. Mecha- nisms of response selectivity revealed by small-field stimuli,/ Neurophysiol. 65: 1346–1359.Google Scholar
  44. Duffy, C. J., and Wurtz, R. H., 1995a, Response of monkey MST neurons to optic flow stimuli with shifted centers of motion,/ Neurosci. 15: 5192–5208.Google Scholar
  45. Duffy, C. J., and Wurtz, R. H., 1995b, Optic flow, posture, and the dorsal visual pathway, in: Perception, Memory, and Emotion: Frontier in Neuroscience (T. ( )no, B. L. McNaughton, S. Molotchnikoff, E. T. Rolls, and H. Nishijo, eds.), Pergamon Press, Oxford.Google Scholar
  46. Dupont, P., Orban, G. A., De Bruyn, B., Verbruggen, A., and Mortelmans, L., 1994, Many areas in the human brain respond to visual motion, J. Neurophysiol. 72: 1420–1424.PubMedGoogle Scholar
  47. Dupont, P., Rosier, A., Vandenberghe, R., De Bruyn, B., Bormans, G., Mortelmans, L., and Orban, G. A., 1995, Regions in the human brain involved in the processing of motion discontinuities and of uniform motion: A PEE study, Soc. Neurosci. Abstr. 21: 663.Google Scholar
  48. Dürsteler, M. R., and Wurtz, R. H., 1988, Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST, J. Neurophysiol. 60: 940–965.PubMedGoogle Scholar
  49. Dürsteler, M. R., Wurtz, R. H., and Newsome, W. T., 1987, Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey, J. Neurophysiol. 57: 1262–1287.PubMedGoogle Scholar
  50. Erickson, R. G., and Dow, B. M., 1989, Foveal tracking cells in the superior temporal sulcus of the macaque monkey, Exp. Brain Res. 78: 113–131.PubMedGoogle Scholar
  51. Erickson, R. G., and Thier, P., 1991, A neuronal correlate of spatial stability during periods of self-induced visual motion, Exp. Brain Res. 86: 608–616.PubMedGoogle Scholar
  52. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1: 1–47.PubMedGoogle Scholar
  53. Ferrera, V. P., Nealey, T. A., and Maunsell, J. H. R., 1994a, Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways, J. Neurosci. 14: 2080–2088.PubMedGoogle Scholar
  54. Ferrera, V. P., Rudolph, K. K., and Maunsell, J. H. R., 1994b, Responses of neurons in the parietal and temporal visual pathways during a motion task, J. Neurosci. 14: 6171–6186.PubMedGoogle Scholar
  55. Friedman, H. R., and Goldman-Rakic, P. S., 1988, Activation of the hippocampus and dentate gyrus by working-memory: A 2-deoxyglucose study of behaving rhesus monkeys,/ Neurosci. 8:46934706.Google Scholar
  56. Fries, W., 1981, The projections from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey, Proc. R. Soc. Lond. B 213: 73–80.PubMedGoogle Scholar
  57. Galletti, C., and Battaglini, I’. P., 1989, Gaze-dependent visual neurons in area V3A of monkey prestriate cortex, J. Neurosci. 9: 1 112–1 125.Google Scholar
  58. Gattass, R., and Gross, C. G., 1981, Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque,/ Neurophysiol. 46: 621–638.Google Scholar
  59. Gegenfurtner, K. R., Kiper, 1). C., Beusmans, J. M. H., Carandini, M., Zaidi, Q., and Movshon, J. A., 1994, Chromatic properties of neurons in macaque MT, Visual Neurosci. 11: 455–466.Google Scholar
  60. Girard, P., and Bullier, J., 1989, Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey, J. Neurophysiol. 62: 1287–1302.PubMedGoogle Scholar
  61. Girard, 1’., Salin, P.-A., and Bullier, J., 1991, Visual activity in macaque area V4 depends on area 17 input, Neuroreport 2: 81–84.Google Scholar
  62. Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V 1, J. Neurophysiol. 67: 1437–1446.PubMedGoogle Scholar
  63. Glickstein, M., Cohen, J. L., Dixon, B., Gibson, A., Hollins, M., Labossiere, E., and Robinson, F., 1980, Corticopontine visual projections in macaque monkeys, J. Comp. Neurol. 190: 209–229.PubMedGoogle Scholar
  64. Graziano, M. S. A., Andersen, R. A., and Snowden, R. J., 1994, Tuning of MST neurons to spiral motions,/ Neurosci. 14: 54–67.Google Scholar
  65. Grasser, O.J., Pause, M., and Schreiter, U., 1990, Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): Visual and neck receptor responses, J. Physiol. (Lond.) 430: 559–583.Google Scholar
  66. Hawken, M. J., and Parker, A. J., 1990, Detection and discrimination mechanisms in the striate cortex of the old-world monkey, in: Vision: Coding and Efficiency (C. Blakemore, ed.), Cambridge University Press, Cambridge, pp. 103–1 16.Google Scholar
  67. Hawken, M. J., Parker, A. J., and Lund, J. S., 1988, Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the old world monkey, J. Neurosci. 8: 35413548.Google Scholar
  68. Hikosaka, K., Iwai, E., Saito, H., and Tanaka, K., 1988, Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey, J. Neurophysiol. 60: 1615–1637.PubMedGoogle Scholar
  69. Hoffmann, K. P., Distler, C., and Erickson, R., 1991, Functional projections from striate cortex and superior temporal sulcus to the nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic tract (DTN) of macaque monkeys, J. Comp. Neurol. 313: 707–724.PubMedGoogle Scholar
  70. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (Lond.) 195: 215–243.Google Scholar
  71. Kawano, K., Shidara, M., Wanatabe, Y., and Yamane, S., 1994, Neural activity in cortical area MST of alert monkey during ocular following responses, J. Neurophysiol. 71: 2305–2324.PubMedGoogle Scholar
  72. Kennedy, W. A., Dale, A. M., Reppas, J. B., Liu, A. K., Belliveau, J. W., Rosen, B. R., and ‘Footcll, R. B. H., 1995, fMRI responses to 180 degree reversals of 3D optical flow fields reveal direction selectivity in human area MT, Soc. Neurosci. Abstr. 21: 663.Google Scholar
  73. Kim, J., and Wilson, H. R., 1993, Dependence of plaid motion coherence on component grating directions, Vision Res. 33: 2479–2489.PubMedGoogle Scholar
  74. Koenderink, J. J., and van Doom, A. J., 1975, Invariant properties of the motion parallax field due to the movement of rigid bodies relative to an observer, Optica Acta 22: 773–791.Google Scholar
  75. Komatsu, H., and Wurtz, R. H., 1988a, Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J. Neurophysiol. 60: 580–603.PubMedGoogle Scholar
  76. Komatsu, H., and Wurtz, R. H., 1988b, Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation, J. Neurophysiol. 60: 621–644.PubMedGoogle Scholar
  77. Komatsu, H., and Wurtz, R. H., 1989, Modulation of pursuit eye movements by stimulation of cortical areas MT and MST, J. Neurophysiol. 62: 31–47.PubMedGoogle Scholar
  78. Kovacs, Gy., Vogels, R., and Orban, G. A., 1995, Selectivity of macaque inferior temporal neurons for partially occluded shapes, J. Neurosci. 15: 1984–1997.PubMedGoogle Scholar
  79. Kreiter, A. K., and Singer, W., 1992, Oscillatory neuronal responses in the visual cortex of the awake macaque monkey, Eur. J. Neurosci. 4: 369–375.PubMedGoogle Scholar
  80. Lagae, L., 1991, A neurophysiological study of optic flow analysis in the monkey brain, Ph.D. Thesis, Faculty of Medicine, KU Leuven.Google Scholar
  81. Lagae, L., Gulyas, B., Raiguel, S., and Orban, G. A., 1989, Laminar analysis of motion information processing in macaque V5, Brain Res. 496: 361–367.PubMedGoogle Scholar
  82. Lagae, L., Raiguel, S., and Orban, G. A., 1993, Speed and direction selectivity of macaque middle temporal neurons, J. Neurophysiol. 69: 19–39.PubMedGoogle Scholar
  83. Lagae, L., Maes, H., Raiguel, S., Xiao, D.-K., and Orban, G. A., 1994, Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST, J. Neurophysiol. 71: 1597–1626.PubMedGoogle Scholar
  84. Lauwers, K., Saunders, R. C., De Bruyn, B., Vogels, R., Vandenbussche, E., and Orban, G. A., 1995, The effect of MT lesions on direction discrimination and on orientation discrimination of kinetic gratings in the macaque, Soc. Neurosci. Abstr. 21: 280.Google Scholar
  85. Lennie, P., 1980, Parallel visual pathways: A review, Vision Res. 20: 561–594.PubMedGoogle Scholar
  86. Logothetis, N. K., and Charles, E. R., 1990, V4 responses to gratings defined by random dot motion, Invest. Ophthalmol. Vis. Sci. Suppl. 31: 444.Google Scholar
  87. Logothetis, N. K., and Schall, J. I)., 1989, Neuronal correlates of subjective visual perception, Science 245: 761–763.Google Scholar
  88. Lu, Z.-L., and Sperling, G., 1995, The functional architecture of human visual motion perception, Vision Res. 35: 2697–2722.PubMedGoogle Scholar
  89. Lund, J. S., Lund, R. D., Hendrickson, A. E., Bunt, A. M., and Fuchs, A. F., 1975, The origin of efferent pathways from the primary visual cortex (area 17) of the macaque monkey as shown by retrograde transport of horseradish peroxidase, J. Comp. Neurol. 164: 287–304.PubMedGoogle Scholar
  90. Lund, J. S., Hendrickson, A. E., Ogren, M. P., and Tobin, E. A., 1981, Anatomical organization of primate visual cortex area VII, J. Comp. Neurol. 202: 19–45.PubMedGoogle Scholar
  91. Marcar, V. L., and Cowey, A., 1992, The effect of removing superior temporal cortical notion areas in the macaque monkey: IL Motion discrimination using random dot displays, Eue. J. Neurosci. 4: 1228–1238.Google Scholar
  92. Marcar, V. L., Raiguel, S. E., Xiao, D., Maes, H., and Orban, G. A., 1992, Do cells in area V2 respond to the orientation of kinetic boundaries? Soc. Neurosci. Abstr. 18: 1275.Google Scholar
  93. Marcar, V. L., Xiao, D.-K., Raiguel, S.E., and Orban, G. A., 1994, Selectivity of area V2 of the macaque to kinetic-and other types of boundaries, Soc. Neurosci. Abstr. 20: 1740.Google Scholar
  94. Marcar, V. L., Xiao, D.-K., Raiguel, S. E., Maes, H., and Orban, G. A., 1995, Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey, J. Neurophysiol. 74: 1258–1270.PubMedGoogle Scholar
  95. Maunsell, J. H. R., 1987, Physiological evidence for two visual subsystems, in: Matters of Intelligence ( L. Vainc, ed.), Keidel, Dordrecht, Holland, pp. 59–87.Google Scholar
  96. Maunsell, J. H. R., and Van Essen, D. C., 1983a, Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity of stimulus direction, speed, and orientation, J. Neurophysiol. 49: 1127–1147.PubMedGoogle Scholar
  97. Maunsell, J. H. R., and Van Essen, D. C., 19836, Functional properties of neurons in middle temporal visual area of the macaque monkey. 11. Binocular interactions and sensitivity to binocular disparity, J. Neurophysiol. 49: 1148–1167.Google Scholar
  98. Maunsell, J. H. R., and Van Essen, D. C., 1983e, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey,/ Neurosci. 3: 2563 2586.Google Scholar
  99. Maunsell, J. H. R., and Van Essen, D. C., 1987, Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries, J. Comp. Neurol. 266: 535–555.PubMedGoogle Scholar
  100. Maunsell, J. H. R., Nealey, T. A., and DePriest, D. D., 1990, Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey, J. Neuro-sci. 10: 3323–3334.Google Scholar
  101. Maunsell, J. H. R., Sclar, G., Nealey, T. A., and DePriest, D. D., 1991, Extraretinal representations in area V4 in the macaque monkey, Visual Neurosci. 7: 561–573.Google Scholar
  102. Merigan, W. H., and Maunsell, J. H. R., 1993, How parallel are the primate visual pathways? Annu. Rev. Neurosci. 16: 369–402.PubMedGoogle Scholar
  103. Mesulam, M.-M., 1990, Large-scale neurocognitive networks and distributed processing for attention, language, and memory, Ann. Neurol. 28: 597–613.PubMedGoogle Scholar
  104. Mikami, A., 1992, Spatiotemporal characteristics of direction-selective neurons in the middle temporal visual area of the macaque monkey, Exp. Brain Res. 90: 40–46.PubMedGoogle Scholar
  105. Mikami, A., Newsome, W. T., and Wurtz, R. H., 1986a, Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT,/ Neurophysiol. 55: 1308–1327.Google Scholar
  106. Mikami, A., Newsome, W. T., and Wurtz, R. H., 19866, Motion selectivity in macaque visual cortex. 11. Spatiotemporal range of directional interactions in MT and V1, J. Neurophysiol. 55: 1328 1339.Google Scholar
  107. Miles, F. A., Kawano, K., and Optical), L. M., 1986, Short-latency ocular following responses of monkey. I. Dependent on temporospatial properties of visual input, J. Neurophysiol. 56: 1321–1354.PubMedGoogle Scholar
  108. Milner, A. D., Perrett, 1). 1., Johnston, R. S., Benson, P. J., Jordan, T. R., Heeley, D. W., Bettucci, D., Mortara, F., Mutani, R., ‘ferazzi, E., and Davidson, D. L. W., 1991, Perception and action in “visual form agnosia,” Brain 114: 405–428.Google Scholar
  109. Movshon, J. A., and Newsome, W. ‘l’., 1984, Functional characteristics of striate cortical neurons projecting to MT in the macaque, Soc. Neurosci. Abstr. 10: 933.Google Scholar
  110. Movshon, J. A., Adelson, E. H., Gizzi, M. S., and Newsome, W. T., 1985, The analysis of moving visual patterns, in: Pattern Recognition Mechanisms (R. Gattass., and C. Gross, eds.), Pontificia Academia Scientiarium, Vatican City, pp. 117–151.Google Scholar
  111. Movshon, J. A., Lisberger, S. G., and Krauzlis, R. J., 1990, Visual cortical signals supporting smooth pursuit eye movements, in: Cold Spring Harbor Symposia on Quantitative Biology, Volume 1.V, The Brain, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 707–716.Google Scholar
  112. Murasugi, C. M., Salzman, C. D., and Newsome,W. T., 1993, Microstimulation in visual area MT: Effects of varying pulse amplitude and frequency, J. Neurosci. 13: 1719–1729.PubMedGoogle Scholar
  113. Nakayama, K., 1985, Biological image motion processing: A review, Vision Res. 25:625–660. Nealey, T. A., and Maunsell, J. H. R., 1994, Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex, J. Neurosci. 14: 2069–2079.Google Scholar
  114. Newsome, W. T., and Paré, E. B., 1988, A selective impairment of motion perception following lesions of the middle temporal visual area (MT), J. Neurosci. 8: 2201–2211.PubMedGoogle Scholar
  115. Newsome, W. T., Wurtz, R. H., Dürsteler, M. R., and Mikami, A., 1985, Deficits in visual motion processing following ibonetic acid lesions of the middle temporal visual area of the macaque monkey, J. Neurosci. 5: 825–840.PubMedGoogle Scholar
  116. Newsome, W. T., Wurtz, R. H., and Komatsu, H., 1988, Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs, J. Neurophysiol. 60: 604–620.PubMedGoogle Scholar
  117. Newsome, W. T., Britten, K. H., and Movshon, J. A., 1989, Neuronal correlates of a perceptual decision, Nature 341: 52–54.PubMedGoogle Scholar
  118. Olavarria, J. F., DeYoe,E. A., Knierim, J. J., Fox, J. M., and Van Essen, D. C., 1992, Neural responses to visual texture patterns in middle temporal area of the macaque monkey, J. Neurophysiol. 68: 164–181.Google Scholar
  119. Orban, G. A., 1986, Processing of moving images in the geniculocortical pathway, in: Visual Neuroscience ( J. D. Pettigrew, K. J. Sandersen, and W. R. Levick, eds.), Cambridge University Press, Cambridge, pp. 121–141.Google Scholar
  120. Orhan, G. A., 1991, Quantitative electrophysiology of visual cortical neurones, in: Vision and Visual Dysfunction, Volume 4, The Neural Basis of Visual Function (J. Cronly-Dillon, gen. ed., and A. G. Leventhal, ed.), Macmillan, London, pp. 173–222.Google Scholar
  121. Orban, G. A., 1992, The analysis of motion signals and the nature of processing in the primate visual system, in: Artificial and Biological Vision Systems ( G. A. Urban and H. H. Nagel, eds.), Springer-Verlag, Berlin, pp. 24–56.Google Scholar
  122. Orhan, G. A., 1994, Motion processing in monkey striate cortex, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 413–441.Google Scholar
  123. Orhan, G. A., Kennedy, H., and Macs, H., 1981a, Response to movement of neurons in areas 17 and 18 of the cat: Velocity sensitivity,/ Neurophysiol. 45: 1043–1058.Google Scholar
  124. Orban, G. A., Kennedy, H., and Maes, H., 1981b, Response to movement of neurons in areas 17 and 18: Direction selectivity,/ Neurophysiol. 45: 1059–1073.Google Scholar
  125. Orban, G. A., Kennedy, H., and Bullier, J., 1986, Velocity sensitivity and direction selectivity of neurons in areas V 1 and V2 of the monkey: Influence of eccentricity, J. Neurophysiol. 56: 462–480.PubMedGoogle Scholar
  126. Orban, G. A., Lagae, 1.., Verri, A., Raiguel, S., Xiao, D., Macs, H., and Torre, V., 1992, First-order analysis of optical flow in monkey brain, Proc. Nall. Acad. Sci. USA 89: 2595–2599.Google Scholar
  127. Orban, G. A., Lagae, L., Raiguel, S., Xiao D., and Maes, H., 1995a, The speed tuning of medial superior temporal (MST) cell responses to optic-flow components, Perception 24: 269–285.PubMedGoogle Scholar
  128. Orban, G. A., Dupont, P., De Bruyn, B., Vogels, R., Vandenberghe, R., and Mortelmans, L., 1995b, A motion area in human visual cortex, Proc. Natl. Acad. Sci. USA 92: 993–997.PubMedGoogle Scholar
  129. Orban, G. A., Saunders, R.C., and Vandenbussche, E., 1995e, Lesions of the superior temporal cortical motion areas impair speed discrimination in the macaque monkey, Fur. J. Neurosci. 7: 2261–2276.Google Scholar
  130. Orhan, G. A., Xiao, D.-K., Marcar, V., and Raiguel, S., 1996, Selectivity of macaque MT neurons for direction of tilt in depth, Invest. Ophihalmol. Vis. Sci. 37: 485.Google Scholar
  131. Pasternak, ‘T., and Merigan, W. H., 1994, Motion perception following lesions of the superior temporal sulcus in the monkey, Cerebral Cortex 4: 247–259.Google Scholar
  132. Qian, N., and Andersen, R.A., 1995, V 1 responses to transparent and nontransparent motions, Exp. Brain Res. 103: 41–50.PubMedGoogle Scholar
  133. Raiguel, S. E., Lagae, L., GulOs, B., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas V1, V2 and V5, Braire Res. 493: 155–159.Google Scholar
  134. Raiguel, S., Marcar, V., Xiao, D.-K., Macs, H., and Orban, G. A., 1993, Summation properties of macaque MT and MST neurons, Soc. Neurosci. Abstr. 19: 1283.Google Scholar
  135. Raiguel, S., Van I tulle, M., Xiao, 1).-K., Marcar, V. I.., and Orban, G. A., 1995, Shape and spatial distribution of receptive fields and antagonistic motion surrounds in the middle temporal area (V5) of the macaque, Fur. J. Neurosci. 7: 2064–2082.Google Scholar
  136. Rocha-Miranda, C., Bender, 1)., Gross, C. G., and Mishkin, Ni., 1975, Visual activation of neurons in inferotemporal cortex depends on striate cortex and the forebrain commissures, J. Neurophysiol. 38: 475–491.Google Scholar
  137. Rockland, K. S., 1989, Bistratilicd distribution of terminal arbors of individual axons projecting from area VI to middle temporal area (MT) in the macaque monkey, Visual Neurosci. 3: 155–170.Google Scholar
  138. Rockland, K. S., 1995, Morphology of individual axons projecting from area V2 to MT in the macaque, J. Conty. Neurot. 355: 15–26.Google Scholar
  139. Rockland, K. S., and Pandya, D. N., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain. Res. 179:3–20.Google Scholar
  140. Rodman, H. R., and Albright, T. D., 1987, Coding of visual stimulus velocity in area MT of the macaque, Vision Res. 27: 2035–2048.PubMedGoogle Scholar
  141. Rodman, Fi. R., and Albright, T. D., 1989, Single-unit analysis of pattern-motion selective properties in the middle temporal visual area (M1’), Exp. Brain Re.s. 75: 53–64.Google Scholar
  142. Rodman, H. R., Gross, C. G., and Albright, “F. D., 1989, Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal, J. Neurosci. 9: 2033–2050.Google Scholar
  143. Rodman, H. R., Gross, C. G., and Albright, T. 1)., 1990, Afferent basis of visual response properties in area M’l of the macaque. II. Effects of superior colliculus removal, J. Neurosci. 10: 1154–1 164.Google Scholar
  144. Roy, J.-P, Komatsu, H., and Wurtz, R. H., 1992, Disparity sensitivity of neurons in monkey extrastriate area MST, J. Neurosci. 12: 2478–2492.PubMedGoogle Scholar
  145. Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., and Iwai, E., 1986, Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey, J. Neurosci. 6: I45–157.Google Scholar
  146. Saito, H., Tanaka, K., Isom:, H., Yasuda, M., and Mikami, A., 1989, Directionally selective response of cells in the middle temporal area (MT) of the macaque monkey to the movement of equi-luminous opponent color stimuli, Exp. Brain Res. 75: 1–14.Google Scholar
  147. Sakata, H., Shibutaui, H., Kawano, K., and Harrington, T. I.., 1985, Neural mechanisms of space vision in the parietal association cortex of the monkey, Vision Res. 25: 453–463.PubMedGoogle Scholar
  148. Salzman, C. D., and Newsome, W. T., 1994, Neural mechanisms for forming a perceptual decision, Science 264: 231–237.PubMedGoogle Scholar
  149. Salzman, C. D., Murasugi, C. M., Britten, K. H., and Newsome, W. T., 1992, Microstimulation in visual area M“1`: Effects on direction discrimination performance, J. Neurosci. 12: 2331–2355.PubMedGoogle Scholar
  150. Shry, Gy., Vogels, R., and Urban, G. A., 1993, Cue-invariant shape selectivity of macaque inferior temporal neurons, Science 260: 995–997.Google Scholar
  151. Síary, Gy., Vogels, R., Kovtics, Gy., and Urban, G. A., 1995, Responses of monkey inferior temporal neurons to luminance-, motion-, and texture-defined gratings, J. Neurophysiol. 73: 1341–1354.Google Scholar
  152. Schall, J. D, Morel, A., King, D. J., and Bullier, J., 1995, Topography of visual cortex connections with frontal eye field in macaque: Convergence and segregation of processing streams, J. Neurosci. 15: 4464–4487.PubMedGoogle Scholar
  153. Schiller, P. II., 1993, The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey, Visual Neurosci. 10: 717–746.Google Scholar
  154. Schiller, P. H., and Lee, K., 1994, The effects of lateral geniculate nucleus area V4, and middle temporal (MT) lesions on visually guided eye movements, Visual Neurosci. 11: 229–241.Google Scholar
  155. Schiller, P. H., and Malpeli, J. G., 1977, The effect of striate cortex coding on area 18 cells in the monkey, Brain Res. 126: 366–369.PubMedGoogle Scholar
  156. Sclar, G., Maunsell, J. II. R., and Lennie, P., 1990, Coding of image contrast in central visual pathways of the macaque monkey, Vision Res. 30: 1–10.PubMedGoogle Scholar
  157. Sereno, M. I., and Allman, J. M., 1991, Cortical visual areas in mammals, in: The Neural Basis of Visual Function ( A. G. Leventhal, ed.), Macmillan, London, pp. 160–172.Google Scholar
  158. Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., and Tootcl, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268: 889–893.PubMedGoogle Scholar
  159. Shadlen, M. N., Britten, K. H., Newsome, W. T., and Movshon, J. A., 1996, A computational analysis of the relationship between neuronal and behavioral responses to visual motion, J. Neurosci. 16: 1486–1510.PubMedGoogle Scholar
  160. Shipp, S., and Zeki, S. M., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.PubMedGoogle Scholar
  161. Shipp, S., and Zeki, S., 1989a, The organization of connections between areas V5 and VI in macaque monkey visual cortex, Eur. f. Neurosci. 1: 309–332.Google Scholar
  162. Shipp, S., and Zeki, S., 1989b, “File organization of connections between areas V5 and V2 in macaque monkey visual cortex, Eur. J. Neurosci. 1: 333–354.Google Scholar
  163. Siegle, R. M., and Andersen, R. A., 1986, Motion perceptual deficits following ibotenic acid lesions of the middle temporal area (MT) in the behaving rhesus monkey, Soc. Neurosci. Abstr. 12: 1183.Google Scholar
  164. Snowden, R. J., Treue, S., Erickson, R. G., and Andersen, R. A., 1991, The response of area MT and V1 neurons to transparent motion, /. Neurosci. 11: 2768–2785.Google Scholar
  165. Snowden, R. J., Treue, S., and Andersen, R. A., 1992, The response of neurons in areas VI and M’l’ of the alert rhesus monkey to moving random dot patterns, Exp. Brain Res. 88: 389–400.PubMedGoogle Scholar
  166. Spatz, W. B., and “Tigges, J., 1972, Experimental anatomical studies on the ”middle temporal visual area (MT)“ in primates. I. Efferent cortico-cortical connections in marmoset Callitlarix jacchus, J. Comp. Neurol. 146:451–464.Google Scholar
  167. Standage, G. P., and Benevento, L. A., 1983, ‘the organization of connections between the pulvinar and visual area MT in the macaque monkey, Brain Rec. 262: 288–294.Google Scholar
  168. Stoner, G. R., and Albright, T. D., 1992, Neural correlates of perceptual motion coherence, Nature 358: 412–414.PubMedGoogle Scholar
  169. Stoner, G. R., Albright, T. D., and Ramachandran, V. S., 1990, Transparency and coherence in human motion perception, Nature 344: 153–155PubMedGoogle Scholar
  170. Sugita, Y., and Tanaka, K., 1991, Occlusion-related cue used for analysis of motion in the primate visual cortex, NeuroReport 2: 751–754.PubMedGoogle Scholar
  171. Takechi, H., Onoe, H., Imamura, K., Onoe, K., Kakiuchi, “T., Nishiyama, S., Yoshikawa, E., Mori, S., Kosugi, T., Okada, H., Tsukada, H., and Watanabe, Y., 1994, Brain activation study by use of positron emission tomography in unanesthetized monkeys, Neurosci. Lett. 182: 279–282.Google Scholar
  172. Talairach, J., and lirurnoux, P., 1988, Co-Planar Slereotaxic Atlas of the Human Brain, Thieme, New York, p. 122.Google Scholar
  173. Tanaka, K., and Saito, H., 1989, Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of’ the medial superior temporal area of the macaque monkey, J. Neuraphysiol. 62: 626–641.Google Scholar
  174. Tanaka, K., Ilikosaka, K., Saito, H., Yukie, M., Fukada, Y., and Iwai, E., 1986, Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey, J. Neurosci. 6: 134–144.PubMedGoogle Scholar
  175. Tanaka, K., Fukada, Y., and Saito, H., 1989, Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey,/ Neuropltysiol. 62: 642–656.Google Scholar
  176. Tanaka, K., Sugita, Y., Moriya, M., and Saito, fl., 1993, Analysis of object motion in the ventral part of the medial superior temporal area of the macaque visual cortex, J. Neuroplrysiol. 69: 128–142.Google Scholar
  177. Thier, P., and Erickson, R. G., 1992, Responses of visual-tracking neurons from cortical area MST-L to visual, eye and head motion, Eur. J. Neurosci. 4: 539–553.PubMedGoogle Scholar
  178. Tolhurst, D. J., Movshon, J. A., and Dean, A. F., 1983, The statistical reliability of signals in single neurons in cat and monkey visual cortex, Vision Res. 23: 775–785.PubMedGoogle Scholar
  179. Tootell, R. B. H., and Taylor, J. B., 1995, Anatomical evidence for MT/V5 and other cortical visual areas in man, Cerebral Cortex 5: 39–55.PubMedGoogle Scholar
  180. Tootell, R. B. H., Reppas, J. B., Dale, A. M., Look, R. B., Sereno, M. 1., Malach, R., Brady, T. J., and Rosen, B. R., 1995a, Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging, Nature 375: 139–141.Google Scholar
  181. Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. “l’., Brady, T. J., Rosen, B. R., and Belliveau, J. W., 1995b, Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging, J. Neurosci. 15: 3215–3230.Google Scholar
  182. Tootell, R. B. H, Reppas, J. R., and Rosen, B. R., 1995c, Functional analysis of human visual cortical areas V3, VP and V3A using magnetic resonance imaging, Human Brain Mapping Suppl. 1: 62.Google Scholar
  183. Treue, S., and Andersen, R. A., 1993, Tuning of MT cells to velocity gradients, Invest. Ophthalmol. Vis. Sci. Suppl. 34: 813.Google Scholar
  184. Ungerleider, I.. G., and Desimone, R., I 986a, Projections to the superior temporal sulcus from the central and peripheral field representations of V I and V2, J. Comp. Neurol. 248: 147–163.Google Scholar
  185. Ungerleider, L. G., and Desimone, R., I986b, Cortical connections of visual area MT in the macaque, Comp. Neurol. 248: 190–222.Google Scholar
  186. Ungerleider, I.. G., and Mishkin, M., 1979, The striate projection zone in the superior temporal sulcus of Maraca mulatla: Location and topographic Organization,/ Comp. Neurol. 188: 347–366.Google Scholar
  187. Ungerleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in: The Analysis of Visual Behavior (D. J. Ingle, R. J. W. Mansfield, and M. S. Goodale, eds.), MIT Press, Cambridge, MA, PP. 549–586.Google Scholar
  188. Ungerleider, I.. G., Desimone, R., Galkin, T. W., and Mishkin, M., 1984, Subcortical projections of area MT in the macaque, J. Comp. Neurol. 223: 368–386.PubMedGoogle Scholar
  189. Vanduffel, W., Vandeubusschc, E., Singer, W., and Orban, G. A., 1993, Bar orientation discrimination in the cat: A 2-deoxyglucose study, Soc. Neurosci. Abstr. 19: 772.Google Scholar
  190. Vanduffel, W., “Footell, R. B. H., and Orban, G. A., 1995, Metabolic mapping of an orientation discrimination task in the macaque using the double-label deoxyglucose technique, Soc. Neurosci. Abstr. 21: 771.Google Scholar
  191. Van Essen, D. C., Maunsell, J. H. R., and Bixby, J. L., 1981, “Fhe middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization, J. Comp. Neurol. 199: 293–326.Google Scholar
  192. Van Essen, D. C., Anderson, C. H., and Eckman, D.J., 1992, Information processing in the primate visual system: An integrated systems perspective, Science 255: 419–423.Google Scholar
  193. Vogels, R., and Orban, G. A., 1990, How well do response changes of striate neurons signal differences in orientation: A study in the discriminating monkey, J. Neurosci. 10: 3543–3558.PubMedGoogle Scholar
  194. Vogels, R., and Orban, G. A., 1994, Activity of inferior temporal neurons during orientation discrimination with successively presented gratings, J. Neurophysiol. 71: 1428–1451.PubMedGoogle Scholar
  195. Vogels, R., Splicers, W., and Orban, G. A., 1989, The response variability of striate cortical neurons in the behaving monkey, Exp. Brain Res. 77: 432–436.PubMedGoogle Scholar
  196. Von Monakow, C., 1914, Die Lokalisation im Grosshirn und der Abbau der Funktion Durcit Kortikale Herde, Bergmann, Wiesbaden, Germany.Google Scholar
  197. Watson, J. D. G., Myers, R., Frackowiak, R. S. J., Hajnal, J. V., Woods, R. P., Mazziotta, J. C., Shipp, S., and Zeki, S., 1993, Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging, Cerebral Cortex 3: 79–94.PubMedGoogle Scholar
  198. Weller, R. E., and Kaas, J. H., 1983, Retinotopic patterns of connections of area 17 with visual areas V-II and MT in macaque monkeys, J. Comp. Neurol. 220: 253–279.PubMedGoogle Scholar
  199. Wurtz, R. H., Yamasaki, D. S., Duffy, D. J., and Roy, J.-P., 1990, Functional specialization for visual motion processing in primate cerebral cortex, in: Cold Spring Harbor Symposia on Quantitative Biology, Volume I.V, The Brain, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 717–727.Google Scholar
  200. Xiao, D.-K., Marcar, V., Raiguel, S., Macs, H., and Orban, G. A., 1993, Influence of stimulus duration on speed tuning of MT neurons, S’oc. Neurosci. Abstr. 19: 769.Google Scholar
  201. Xiao, D.-K., Marcar, V. I.., Raiguel, S. E., and Orban, G. A., 1995a, Spatial heterogeneity in the surround of area M“I’ for motion vectors differing in direction or speed from the CRF, Soc. Neurosci. Abstr. 21: 663.Google Scholar
  202. Xiao, D.-K., Raiguel, S., Marcar, V., Koenderink, J., and Orban, G. A., 1995h, Spatial heterogeneity of inhibitory surrounds in visual area MT, Proc. Natl. Acad. Sci. USA 92: 11303–11306.PubMedGoogle Scholar
  203. Xiao, D.-K., Marcar, V. L., Raiguel, S. E., and Orban, G. A., 1997, Selectivity of macaque MT/V5 neurons for surface orientation in depth, specified by motion, Fur. J. Neurosci. 9: 956–964.Google Scholar
  204. Yamasaki, D. S., and Wurtz, R. H., 1991, Recovery of function after lesions in the superior temporal sulcus in the monkey, J. Neurophy.siol. 66: 651–673.Google Scholar
  205. Zeki, S. M., 1969, Representation of central visual fields in prestriate cortex of monkey, Brain Res. 14: 271–291.Google Scholar
  206. Zeki, S. M., 1971, Cortical projections from two prestriate areas in the monkey, Brain Res. 34: 19–35.PubMedGoogle Scholar
  207. Zeki, S. M., 1974, Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey,/. Physiol. (Lund.) 236: 549–573.Google Scholar
  208. Zeki, S. M., 1978, Uniformity and diversity of structure and function in rhesus monkey prestriate visual Cortex,/ Physiol. (Lund.) 277: 273–290.Google Scholar
  209. Zeki, S. M., 1980, The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex, Proc. R. Soc. Load. B 207: 239–248.Google Scholar
  210. Zeki, S., Watson, J. D. C., 1.ueck, C. J., Friston, K.J., Kennard, C., and Frackowiak, R. S. J., 1991, A direct demonstration of functional specialization in human visual cortex, J. Neurosci. 11: 641–649.Google Scholar
  211. Zohary, E., Celebrini, S., Britten, K. H., and Newsome, W. T., 1994a, Neuronal plasticity that underlies improvement in perceptual performance, Science 263: 1289–1292.PubMedGoogle Scholar
  212. Zohary, E., Shadlen, M. N., and Newsome, W. T., 1994h, Correlated neuronal discharge rate and its implications for psychophysical performance, Nature 370: 140–143.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Guy A. Orban
    • 1
  1. 1.Laboratorium voor Neuro- en PsychofysiologieKU Leuven, Medical SchoolLeuvenBelgium

Personalised recommendations