Skip to main content

Functional Organization of Area V2 in the Awake Monkey

  • Chapter
Extrastriate Cortex in Primates

Part of the book series: Cerebral Cortex ((CECO,volume 12))

Abstract

The second area of primate visual cortex, area V2, is the first and one of the largest areas of extrastriate cortex, yet relatively little is known about its function in vision. This chapter provides insight into the functional organization of area V2 by discussing the correlation between anatomy (cytochrome oxidase pattern) and single-cell physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allman, J., Miezin, F., and McGuinness, E., 1985, Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT), Perception 14: 105–126.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J., Miezin, F., and McGuinness, E., 1990, The effects of background motion on the responses of neurons in the first and second cortical visual areas (V-I and V-I I), in: Signal and Sense: Local and Global Order in Perceptual Maps ( G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley-Liss, New York, pp. 131–141.

    Google Scholar 

  • Baizer, J. S., Robinson, D. L., and Dow, B. M., 1977, Visual responses of area 18 neurons in awake, behaving monkey, J. Neurophysiol. 40: 1024–1037.

    PubMed  CAS  Google Scholar 

  • Baumann, R., Sauvan, X. M., and Peterhans, E., 1996, Neural mechanism of figure—ground segregation at occluding contours in monkey prestriate cortex, in: Braire Theory: Biological Basis and Computational Theory of Vision ( A. Aertsen and V. Braitenberg, eds.), Elsevier, Amsterdam, pp. 53–72.

    Google Scholar 

  • Baumann, R., van der Zwan, R., and Peterhans, E., 1997, Figure—ground segregation at contours: A neural mechanism in the visual cortex of the alert monkey, Eur. J. Neurosci. 9: 1129–1303.

    Google Scholar 

  • Bonhoeffer, T., and Grinvald, A., 1993, “Ehe layout of iso-orientation domains in area 18 of cat visual cortex-optical imaging reveals a pinwheel-like organization, J. Neurosei. 13: 4157–4180.

    Google Scholar 

  • Brigner, W. 1.., and Gallagher, M. B., 1974, Subjective contour: Apparent depth or simultaneous brightness contrast? Percept. Mot. Skills 38: 1047–1053.

    Article  PubMed  CAS  Google Scholar 

  • Brussell, E. M., Stober, S. R., and Bodinger, D. M., 1977, Sensory information and subjective contour, Am. J. Psvchol. 90: 145–156.

    Article  CAS  Google Scholar 

  • Burkhalter, A., and Van Esssen, I). C., 1986, Processing color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey,/ Neurosci. 6: 2327 2351.

    Google Scholar 

  • Cavanagh, P., Boeglin, J. and Favreau, O. E., 1985, Perception of motion in equiluminous kinematograms, Perception 14: 151–162.

    Google Scholar 

  • Coren, S., 1972, Subjective contours and apparent depth, Psychol. Rev. 79: 359–367.

    Article  PubMed  CAS  Google Scholar 

  • DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.

    Article  PubMed  CAS  Google Scholar 

  • Fellenman, D. J., and Van Essen, D. C., 1987, Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex, J. Neurophysiol. 57: 889–920.

    Google Scholar 

  • Eckman, D. J. and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1:1–47.

    Google Scholar 

  • Gegenfurter, K. R., Kiper, I). C., and Fenstemaker, S. B., 1996, Processing of color, form, and motion in macaque area V2, Visual Neurosci. 13: 161–172.

    Article  Google Scholar 

  • Gregory, R. I,., 1977, Vision with isoluminant color contrast: 1. A projection technique and observations, Perception 6: 113–119.

    CAS  Google Scholar 

  • Grosof, D. H., Shapley, R. M., and Hawken, M. J., 1993, Macaque V1 neurons can signal `illusory’ contours, Nature 365: 550–552.

    Article  PubMed  CAS  Google Scholar 

  • Heitger, F., and on der Heydt, R., 1993, A computational model of neural contour processing: Figure—ground segregation and illusory contours, in: Proceedings Fourth International Conference on Computer Vision, Berlin, Germany, IEEE Computer Society Press, Los Alamitos, CA, pp. 32–40.

    Google Scholar 

  • Heitger, F., Rosenthaler, L., von der Heydt, R., Peterhans, E., and Kübler, O., 1992, Simulation of neural contour mechanisms: From simple to end-stopped cells, Vision Res. 32: 963–981.

    Article  PubMed  CAS  Google Scholar 

  • Heitger, F., von der Heydt, R., Peterhans, E., Rosenthaler, L., and Kübler, O., 1997, Simulation of neural contour mechanisms: Representing anomalous contours, Image and Vision Computing,in press.

    Google Scholar 

  • Hubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci. 7: 3378–3415.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (Loud.) 195: 215–243.

    CAS  Google Scholar 

  • (Hubel, I). H., and Wiesel, T. N., 1970, Cells sensitive to binocular depth in area 18 of the macaque monkey cortex, Nature 225: 41–42.

    Article  Google Scholar 

  • Julesz, B., 1971, Foundations of Cyclopean Perception, University of Chicago Press, Chicago.

    Google Scholar 

  • Kanizsa, G., 1979, Organization in Vision. Essays on Gestalt Perception, Praeger, New York. Kennedy, J. M., 1978, Illusory contours and the ends of lines, Perception 7: 605–607.

    Google Scholar 

  • Lamme, V. A. F., 1995,’1 he neurophysiology of figure—ground segregation in primary visual cortex, J. Neurosci. 15: 1605–1615.

    Google Scholar 

  • Leventhal, A. G., and Zhou, Y., 1994, Cat visual cortical cells are sensitive to the orientation and direction of `illusory’ contours, Soc. Neurosci. Abstr. 20: 1053.

    Google Scholar 

  • Levitt, J. B., Kiper, 1). C., and Movshon, J. A., 1994a, Receptive fields and functional architecture of macaque V2, J. Neurophysiol. 71: 2517–2542.

    CAS  Google Scholar 

  • Levitt, J. B., Yoshioka, ‘L, and Lund, J. S., 1994b, Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams, J. Comp. Neural. 342: 551–570.

    CAS  Google Scholar 

  • Livingstone, M. S., and Hubel, D. H., 1987, Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7: 3371–3377.

    PubMed  CAS  Google Scholar 

  • Logothetis, N. K., and Charles, E. R., 1990, V4 Responses to gratings defined by random dot motion, Invest. Ophthalmol. Vis. Sci. 31: 90.

    Google Scholar 

  • Malach, R., Tootell, R. B. H., and Malonek, D., 1994, Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2, Cerebral Cortex 4: 151–165.

    Article  PubMed  CAS  Google Scholar 

  • Marcar, V. L., Raiguel, S. E., Xiao, D., Maes, H., and Orban, G. A., 1992, Do cells in area V2 respond to the orientation of kinetic boundaries? Soc. Neurosci. Abstr. 18: 1275.

    Google Scholar 

  • Marcar, V. L., Xiao, D.-K., Raiguel, S. E., Maes, H., and Orban, G. A., 1995, Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey, J. Neurophysiol. 74: 1258–1270.

    PubMed  CAS  Google Scholar 

  • Maunsell, J. FI. R., and Van Essen, D. C., 1983, Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity, J. Neurophysiol. 49: 1148–1167.

    PubMed  CAS  Google Scholar 

  • Movshon, J. A., Adelson, E. H., Gizzi, M. S., and Newsome, W. T., 1985, The analysis of moving visual patterns, in: Pattern Recognition Mechanisms ( C. Chagas, R. Gattass, and C. Gross, eds.), Pontifical Academy of Sciences, Vatican City, pp. 117–151.

    Google Scholar 

  • Nakayama, K., and Shimojo, S., 1990, Da Vinci stereoposis: Depth and subjective occluding contours from unpaired image points, Vision Res. 30: 1811–1825.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, K., Shimojo, S., and Silverman, G. H., 1989, Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects, Perception 18: 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Orban, G. A., 1994, Motion processing in monkey striate cortex, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press; New York, pp. 413–441.

    Google Scholar 

  • Peterhans, E., and Baumann, R., 1994, Elements of form processing from motion in monkey prestriate cortex, Soc. Neurosci. Abstr. 20: 1053.

    Google Scholar 

  • Peterhans, E., and von der Heydt, R., 1989, Mechanisms of contour perception in monkey visual cortex. IL Contours bridging gaps, J. Neurosci. 9: 1749–1763.

    PubMed  CAS  Google Scholar 

  • Peterhans, E., and von der Heydt, R., 1991a, Subjective contours—bridging the gap between psycho-physics and physiology, Trends Neurosci. 14: 112–119.

    Article  PubMed  CAS  Google Scholar 

  • Peterhans, E., and von der Heydt, R., 1991b, Elements of form perception in monkey prestriate cortex, in: Representations of Vision: Trends and Tacit Assumptions (A. Gorea, Y. Frégnac, Z. Ka-

    Google Scholar 

  • poulis, and J. Findlay, eds.), Cambridge University Press. Cambridge, pp. 111–124.

    Google Scholar 

  • Peterhans, E., and von der Heydt, R., 1993, Functional organization of area V2 in the alert macaque, Eur. J. Neurosci. 5: 509–524.

    Article  PubMed  CAS  Google Scholar 

  • Peterhans, E., von der Heydt, R., and Baumgartner, G., 1986, Neuronal responses to illusory contour stimuli reveal stages of visual cortical processing, in: Visual Neuroscience (J. D. Pettigrew, K.J. Sanderson, and W. R. Levick, eds.), Cambridge University Press, Cambridge, pp. 343–351.

    Google Scholar 

  • Petry, S., and Meyer, G. L., 1987, The Perception of Illusory Contours, Springer, New York.

    Book  Google Scholar 

  • Poggio, G. F., and Fischer, B., 1977, Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey, J. Neurophysiol. 40: 1392–1405.

    PubMed  CAS  Google Scholar 

  • Poggio, G. F., Doty, Jr., R. W., and Talbot, W. H., 1977, Fovea’ striate cortex of behaving monkey: Single-neuron responses to square-wave gratings during fixation of gaze, J. Neurophysiol. 40: 1369–1391.

    PubMed  CAS  Google Scholar 

  • Poggio, G. F., Motter, B. C., Squatrito, S., and ‘Frotter, Y., 1985, Responses of neurons in visual cortex (V 1 and V2) of the alert macaque to dynamic random-dot stereograms, Vision Res. 25: 397–406.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, V. S., and Anstis, S., 1986, Figure–ground segregation modulates apparent motion, Vision Res. 26: 1969–1975.

    Article  PubMed  CAS  Google Scholar 

  • Ramachandran, V. S., and Gregory, R. L., 1978, Does colour provide an input to human motion perception? Nature 275: 55–56.

    Article  PubMed  CAS  Google Scholar 

  • Redies, C., Crook, J. M., and Creutzfeldt, O. D., 1986, Neuronal responses to borders with and without luminance gradients in cat visual cortex and dorsal lateral geniculate nucleus, Exp. Brain Res. 61: 469–481.

    Article  PubMed  CAS  Google Scholar 

  • Rockland, K. S., 1985, A reticular pattern of intrinsic connections in primate area V2 (area 18), J. Comp. Neural. 235: 467–478.

    Article  CAS  Google Scholar 

  • Rockland, K. S., 1992, Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey, Cerebral Cortex 2: 353–374.

    Article  PubMed  CAS  Google Scholar 

  • Rockland, K. S., 1995, Morphology of individual axons projecting from area V2 to MT in the macaque, J. Comp. Neural. 355: 15–26.

    Article  CAS  Google Scholar 

  • Rockland, K. S., and Virga, A., 1990, Organization of individual cortical axons projecting from area VI (area 17) to V2 (area 18) in the macaque monkey, Visual Neurosci. 4: 11–28.

    Article  CAS  Google Scholar 

  • Roe, A. W., and Ts’o, D. Y., 1995, Visual topography in primate V2: Multiple representation across functional stripes, J. Neurosci. 15: 3689–3715.

    PubMed  CAS  Google Scholar 

  • Säry, G., Vogels, R., and Orhan, G. A., 1993, Cue-invariant shape selectivity of macaque inferior temporal neurons, Science 260: 995–997.

    Article  PubMed  Google Scholar 

  • Schumann, F., 1990, Beiträge zur Analyse der Gesichtswahrnehmungen. Erste Abhandlung. Einige Beobachtungen über die Zusammenfassung von Gesichtseindrücken zu Einheiten, Z. Psycho’. 23: 1–32.

    Google Scholar 

  • Sheth, B. R., Sharma, J., Rao, S. C., and Sur, M., 1996, Orientation maps of subjective contours in visual cortex, Science 274: 2110–2115.

    Article  PubMed  CAS  Google Scholar 

  • Shipp, S., and Zeki, S., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.

    Article  PubMed  CAS  Google Scholar 

  • Snowden, R. J., Freue, S., Erickson, R. G., and Andersen, R. A., 1991, The response of area MT and V 1 neurons to transparent motion, J. Neurosci. 11: 2768–2785.

    PubMed  CAS  Google Scholar 

  • Soriano, M., Spillman, L., and Bach, M., 1996, The abutting grating illusion, Vision Res. 36:109–116. Stoner, G. R., and Albright, T. D., 1993, Image segmentation cues in motion processing: Implications for modularity in vision, J. Cognitive Neurosci. 5: 129–149.

    Google Scholar 

  • Stoner, G. R., and Albright, T. D., 1996, The interpretation of visual motion: Evidence for surface segmentation mechanisms, Vision Res. 36: 1291–1310.

    Article  PubMed  CAS  Google Scholar 

  • Tamura, H., Sato, H., Katsuyama, N., Hata, Y., and Tsumoto, T., 1996, Less segregated processing of visual information in V2 than in V 1 of the monkey visual cortex, Eur. J. Neurosci. 8: 300-309.

    Google Scholar 

  • Tootell, R. B. H., and Hamilton, S. L., 1989, Functional anatomy of the second visual area (V2) in the macaque, J. Neurosci. 9: 2620–2644.

    PubMed  CAS  Google Scholar 

  • Mown, R. B. H., Silverman, M. S., De Valois, R. L., and Jacobs, G. H., 1983, Functional organization of the second cortical visual area in primates, Science 220: 737–739.

    Article  Google Scholar 

  • Ts’o, D. Y., Gilbert, C. D., and Wiesel, T. N., 1990, Functional architecture of color and disparity in visual area 2 of macaque monkey, Soc. Neurosci. Ahstr. 16: 293.

    Google Scholar 

  • von der Heydt, R., and Peterhans, E., 1989, Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity, J. Neurosci. 9: 1731–1748.

    PubMed  Google Scholar 

  • von der Heydt, R., Peterhans, E., and Baumgartner, G., 1984, Illusory contours and cortical neuron responses, Science 224: 1260–1262.

    Article  PubMed  Google Scholar 

  • von der Heydt, R., Zhou, H., Friedman, H., and Poggio, G. F., 1995, Neurons of area V2 of visual cortex detect edges in random-dot stereograms, Soc. Neurosci. Ahstr. 21: 18.

    Google Scholar 

  • Westheimer, G., and Li, W., 1996, Classifying illusory contours by means of orientation discrimination, J. Neurap/tysiol. 75: 523–528.

    CAS  Google Scholar 

  • Wong-Riley, M. T. T., and Carroll, E. W., 1984, Quantitative light and electron microscopic analysis of cytochrome-oxidase rich zones in VII prestriate cortex of’ the squirrel monkey, J. Comp. Neurol. 222: 18–37.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S. M., 1978, Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex, J. Physiol. ( Land. ) 277: 273–290.

    Google Scholar 

  • Zeki, S., and Shipp, S., 1988, The functional logic of cortical connections, Nature 335:311–317.

    Google Scholar 

  • Zipser, K., Lanime, V. A. F., and Schiller, P. H., 1996, Contextual modulation in primary visual cortex, J. Neurosci. 16: 7376–7389.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Peterhans, E. (1997). Functional Organization of Area V2 in the Awake Monkey. In: Rockland, K.S., Kaas, J.H., Peters, A. (eds) Extrastriate Cortex in Primates. Cerebral Cortex, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9625-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9625-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9627-8

  • Online ISBN: 978-1-4757-9625-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics