Functional Organization of Area V2 in the Awake Monkey

  • Esther Peterhans
Part of the Cerebral Cortex book series (CECO, volume 12)


The second area of primate visual cortex, area V2, is the first and one of the largest areas of extrastriate cortex, yet relatively little is known about its function in vision. This chapter provides insight into the functional organization of area V2 by discussing the correlation between anatomy (cytochrome oxidase pattern) and single-cell physiology.


Illusory Contour Subjective Contour Thin Stripe Binocular Disparity Middle Temporal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allman, J., Miezin, F., and McGuinness, E., 1985, Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT), Perception 14: 105–126.PubMedCrossRefGoogle Scholar
  2. Allman, J., Miezin, F., and McGuinness, E., 1990, The effects of background motion on the responses of neurons in the first and second cortical visual areas (V-I and V-I I), in: Signal and Sense: Local and Global Order in Perceptual Maps ( G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley-Liss, New York, pp. 131–141.Google Scholar
  3. Baizer, J. S., Robinson, D. L., and Dow, B. M., 1977, Visual responses of area 18 neurons in awake, behaving monkey, J. Neurophysiol. 40: 1024–1037.PubMedGoogle Scholar
  4. Baumann, R., Sauvan, X. M., and Peterhans, E., 1996, Neural mechanism of figure—ground segregation at occluding contours in monkey prestriate cortex, in: Braire Theory: Biological Basis and Computational Theory of Vision ( A. Aertsen and V. Braitenberg, eds.), Elsevier, Amsterdam, pp. 53–72.Google Scholar
  5. Baumann, R., van der Zwan, R., and Peterhans, E., 1997, Figure—ground segregation at contours: A neural mechanism in the visual cortex of the alert monkey, Eur. J. Neurosci. 9: 1129–1303.Google Scholar
  6. Bonhoeffer, T., and Grinvald, A., 1993, “Ehe layout of iso-orientation domains in area 18 of cat visual cortex-optical imaging reveals a pinwheel-like organization, J. Neurosei. 13: 4157–4180.Google Scholar
  7. Brigner, W. 1.., and Gallagher, M. B., 1974, Subjective contour: Apparent depth or simultaneous brightness contrast? Percept. Mot. Skills 38: 1047–1053.PubMedCrossRefGoogle Scholar
  8. Brussell, E. M., Stober, S. R., and Bodinger, D. M., 1977, Sensory information and subjective contour, Am. J. Psvchol. 90: 145–156.CrossRefGoogle Scholar
  9. Burkhalter, A., and Van Esssen, I). C., 1986, Processing color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey,/ Neurosci. 6: 2327 2351.Google Scholar
  10. Cavanagh, P., Boeglin, J. and Favreau, O. E., 1985, Perception of motion in equiluminous kinematograms, Perception 14: 151–162.Google Scholar
  11. Coren, S., 1972, Subjective contours and apparent depth, Psychol. Rev. 79: 359–367.PubMedCrossRefGoogle Scholar
  12. DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.PubMedCrossRefGoogle Scholar
  13. Fellenman, D. J., and Van Essen, D. C., 1987, Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex, J. Neurophysiol. 57: 889–920.Google Scholar
  14. Eckman, D. J. and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1:1–47.Google Scholar
  15. Gegenfurter, K. R., Kiper, I). C., and Fenstemaker, S. B., 1996, Processing of color, form, and motion in macaque area V2, Visual Neurosci. 13: 161–172.CrossRefGoogle Scholar
  16. Gregory, R. I,., 1977, Vision with isoluminant color contrast: 1. A projection technique and observations, Perception 6: 113–119.Google Scholar
  17. Grosof, D. H., Shapley, R. M., and Hawken, M. J., 1993, Macaque V1 neurons can signal `illusory’ contours, Nature 365: 550–552.PubMedCrossRefGoogle Scholar
  18. Heitger, F., and on der Heydt, R., 1993, A computational model of neural contour processing: Figure—ground segregation and illusory contours, in: Proceedings Fourth International Conference on Computer Vision, Berlin, Germany, IEEE Computer Society Press, Los Alamitos, CA, pp. 32–40.Google Scholar
  19. Heitger, F., Rosenthaler, L., von der Heydt, R., Peterhans, E., and Kübler, O., 1992, Simulation of neural contour mechanisms: From simple to end-stopped cells, Vision Res. 32: 963–981.PubMedCrossRefGoogle Scholar
  20. Heitger, F., von der Heydt, R., Peterhans, E., Rosenthaler, L., and Kübler, O., 1997, Simulation of neural contour mechanisms: Representing anomalous contours, Image and Vision Computing,in press.Google Scholar
  21. Hubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci. 7: 3378–3415.PubMedGoogle Scholar
  22. Hubel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (Loud.) 195: 215–243.Google Scholar
  23. (Hubel, I). H., and Wiesel, T. N., 1970, Cells sensitive to binocular depth in area 18 of the macaque monkey cortex, Nature 225: 41–42.CrossRefGoogle Scholar
  24. Julesz, B., 1971, Foundations of Cyclopean Perception, University of Chicago Press, Chicago.Google Scholar
  25. Kanizsa, G., 1979, Organization in Vision. Essays on Gestalt Perception, Praeger, New York. Kennedy, J. M., 1978, Illusory contours and the ends of lines, Perception 7: 605–607.Google Scholar
  26. Lamme, V. A. F., 1995,’1 he neurophysiology of figure—ground segregation in primary visual cortex, J. Neurosci. 15: 1605–1615.Google Scholar
  27. Leventhal, A. G., and Zhou, Y., 1994, Cat visual cortical cells are sensitive to the orientation and direction of `illusory’ contours, Soc. Neurosci. Abstr. 20: 1053.Google Scholar
  28. Levitt, J. B., Kiper, 1). C., and Movshon, J. A., 1994a, Receptive fields and functional architecture of macaque V2, J. Neurophysiol. 71: 2517–2542.Google Scholar
  29. Levitt, J. B., Yoshioka, ‘L, and Lund, J. S., 1994b, Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams, J. Comp. Neural. 342: 551–570.Google Scholar
  30. Livingstone, M. S., and Hubel, D. H., 1987, Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7: 3371–3377.PubMedGoogle Scholar
  31. Logothetis, N. K., and Charles, E. R., 1990, V4 Responses to gratings defined by random dot motion, Invest. Ophthalmol. Vis. Sci. 31: 90.Google Scholar
  32. Malach, R., Tootell, R. B. H., and Malonek, D., 1994, Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2, Cerebral Cortex 4: 151–165.PubMedCrossRefGoogle Scholar
  33. Marcar, V. L., Raiguel, S. E., Xiao, D., Maes, H., and Orban, G. A., 1992, Do cells in area V2 respond to the orientation of kinetic boundaries? Soc. Neurosci. Abstr. 18: 1275.Google Scholar
  34. Marcar, V. L., Xiao, D.-K., Raiguel, S. E., Maes, H., and Orban, G. A., 1995, Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey, J. Neurophysiol. 74: 1258–1270.PubMedGoogle Scholar
  35. Maunsell, J. FI. R., and Van Essen, D. C., 1983, Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity, J. Neurophysiol. 49: 1148–1167.PubMedGoogle Scholar
  36. Movshon, J. A., Adelson, E. H., Gizzi, M. S., and Newsome, W. T., 1985, The analysis of moving visual patterns, in: Pattern Recognition Mechanisms ( C. Chagas, R. Gattass, and C. Gross, eds.), Pontifical Academy of Sciences, Vatican City, pp. 117–151.Google Scholar
  37. Nakayama, K., and Shimojo, S., 1990, Da Vinci stereoposis: Depth and subjective occluding contours from unpaired image points, Vision Res. 30: 1811–1825.PubMedCrossRefGoogle Scholar
  38. Nakayama, K., Shimojo, S., and Silverman, G. H., 1989, Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects, Perception 18: 55–68.PubMedCrossRefGoogle Scholar
  39. Orban, G. A., 1994, Motion processing in monkey striate cortex, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press; New York, pp. 413–441.Google Scholar
  40. Peterhans, E., and Baumann, R., 1994, Elements of form processing from motion in monkey prestriate cortex, Soc. Neurosci. Abstr. 20: 1053.Google Scholar
  41. Peterhans, E., and von der Heydt, R., 1989, Mechanisms of contour perception in monkey visual cortex. IL Contours bridging gaps, J. Neurosci. 9: 1749–1763.PubMedGoogle Scholar
  42. Peterhans, E., and von der Heydt, R., 1991a, Subjective contours—bridging the gap between psycho-physics and physiology, Trends Neurosci. 14: 112–119.PubMedCrossRefGoogle Scholar
  43. Peterhans, E., and von der Heydt, R., 1991b, Elements of form perception in monkey prestriate cortex, in: Representations of Vision: Trends and Tacit Assumptions (A. Gorea, Y. Frégnac, Z. Ka-Google Scholar
  44. poulis, and J. Findlay, eds.), Cambridge University Press. Cambridge, pp. 111–124.Google Scholar
  45. Peterhans, E., and von der Heydt, R., 1993, Functional organization of area V2 in the alert macaque, Eur. J. Neurosci. 5: 509–524.PubMedCrossRefGoogle Scholar
  46. Peterhans, E., von der Heydt, R., and Baumgartner, G., 1986, Neuronal responses to illusory contour stimuli reveal stages of visual cortical processing, in: Visual Neuroscience (J. D. Pettigrew, K.J. Sanderson, and W. R. Levick, eds.), Cambridge University Press, Cambridge, pp. 343–351.Google Scholar
  47. Petry, S., and Meyer, G. L., 1987, The Perception of Illusory Contours, Springer, New York.CrossRefGoogle Scholar
  48. Poggio, G. F., and Fischer, B., 1977, Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey, J. Neurophysiol. 40: 1392–1405.PubMedGoogle Scholar
  49. Poggio, G. F., Doty, Jr., R. W., and Talbot, W. H., 1977, Fovea’ striate cortex of behaving monkey: Single-neuron responses to square-wave gratings during fixation of gaze, J. Neurophysiol. 40: 1369–1391.PubMedGoogle Scholar
  50. Poggio, G. F., Motter, B. C., Squatrito, S., and ‘Frotter, Y., 1985, Responses of neurons in visual cortex (V 1 and V2) of the alert macaque to dynamic random-dot stereograms, Vision Res. 25: 397–406.PubMedCrossRefGoogle Scholar
  51. Ramachandran, V. S., and Anstis, S., 1986, Figure–ground segregation modulates apparent motion, Vision Res. 26: 1969–1975.PubMedCrossRefGoogle Scholar
  52. Ramachandran, V. S., and Gregory, R. L., 1978, Does colour provide an input to human motion perception? Nature 275: 55–56.PubMedCrossRefGoogle Scholar
  53. Redies, C., Crook, J. M., and Creutzfeldt, O. D., 1986, Neuronal responses to borders with and without luminance gradients in cat visual cortex and dorsal lateral geniculate nucleus, Exp. Brain Res. 61: 469–481.PubMedCrossRefGoogle Scholar
  54. Rockland, K. S., 1985, A reticular pattern of intrinsic connections in primate area V2 (area 18), J. Comp. Neural. 235: 467–478.CrossRefGoogle Scholar
  55. Rockland, K. S., 1992, Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey, Cerebral Cortex 2: 353–374.PubMedCrossRefGoogle Scholar
  56. Rockland, K. S., 1995, Morphology of individual axons projecting from area V2 to MT in the macaque, J. Comp. Neural. 355: 15–26.CrossRefGoogle Scholar
  57. Rockland, K. S., and Virga, A., 1990, Organization of individual cortical axons projecting from area VI (area 17) to V2 (area 18) in the macaque monkey, Visual Neurosci. 4: 11–28.CrossRefGoogle Scholar
  58. Roe, A. W., and Ts’o, D. Y., 1995, Visual topography in primate V2: Multiple representation across functional stripes, J. Neurosci. 15: 3689–3715.PubMedGoogle Scholar
  59. Säry, G., Vogels, R., and Orhan, G. A., 1993, Cue-invariant shape selectivity of macaque inferior temporal neurons, Science 260: 995–997.PubMedCrossRefGoogle Scholar
  60. Schumann, F., 1990, Beiträge zur Analyse der Gesichtswahrnehmungen. Erste Abhandlung. Einige Beobachtungen über die Zusammenfassung von Gesichtseindrücken zu Einheiten, Z. Psycho’. 23: 1–32.Google Scholar
  61. Sheth, B. R., Sharma, J., Rao, S. C., and Sur, M., 1996, Orientation maps of subjective contours in visual cortex, Science 274: 2110–2115.PubMedCrossRefGoogle Scholar
  62. Shipp, S., and Zeki, S., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.PubMedCrossRefGoogle Scholar
  63. Snowden, R. J., Freue, S., Erickson, R. G., and Andersen, R. A., 1991, The response of area MT and V 1 neurons to transparent motion, J. Neurosci. 11: 2768–2785.PubMedGoogle Scholar
  64. Soriano, M., Spillman, L., and Bach, M., 1996, The abutting grating illusion, Vision Res. 36:109–116. Stoner, G. R., and Albright, T. D., 1993, Image segmentation cues in motion processing: Implications for modularity in vision, J. Cognitive Neurosci. 5: 129–149.Google Scholar
  65. Stoner, G. R., and Albright, T. D., 1996, The interpretation of visual motion: Evidence for surface segmentation mechanisms, Vision Res. 36: 1291–1310.PubMedCrossRefGoogle Scholar
  66. Tamura, H., Sato, H., Katsuyama, N., Hata, Y., and Tsumoto, T., 1996, Less segregated processing of visual information in V2 than in V 1 of the monkey visual cortex, Eur. J. Neurosci. 8: 300-309.Google Scholar
  67. Tootell, R. B. H., and Hamilton, S. L., 1989, Functional anatomy of the second visual area (V2) in the macaque, J. Neurosci. 9: 2620–2644.PubMedGoogle Scholar
  68. Mown, R. B. H., Silverman, M. S., De Valois, R. L., and Jacobs, G. H., 1983, Functional organization of the second cortical visual area in primates, Science 220: 737–739.CrossRefGoogle Scholar
  69. Ts’o, D. Y., Gilbert, C. D., and Wiesel, T. N., 1990, Functional architecture of color and disparity in visual area 2 of macaque monkey, Soc. Neurosci. Ahstr. 16: 293.Google Scholar
  70. von der Heydt, R., and Peterhans, E., 1989, Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity, J. Neurosci. 9: 1731–1748.PubMedGoogle Scholar
  71. von der Heydt, R., Peterhans, E., and Baumgartner, G., 1984, Illusory contours and cortical neuron responses, Science 224: 1260–1262.PubMedCrossRefGoogle Scholar
  72. von der Heydt, R., Zhou, H., Friedman, H., and Poggio, G. F., 1995, Neurons of area V2 of visual cortex detect edges in random-dot stereograms, Soc. Neurosci. Ahstr. 21: 18.Google Scholar
  73. Westheimer, G., and Li, W., 1996, Classifying illusory contours by means of orientation discrimination, J. Neurap/tysiol. 75: 523–528.Google Scholar
  74. Wong-Riley, M. T. T., and Carroll, E. W., 1984, Quantitative light and electron microscopic analysis of cytochrome-oxidase rich zones in VII prestriate cortex of’ the squirrel monkey, J. Comp. Neurol. 222: 18–37.PubMedCrossRefGoogle Scholar
  75. Zeki, S. M., 1978, Uniformity and diversity of structure and function in rhesus monkey prestriate visual cortex, J. Physiol. ( Land. ) 277: 273–290.Google Scholar
  76. Zeki, S., and Shipp, S., 1988, The functional logic of cortical connections, Nature 335:311–317.Google Scholar
  77. Zipser, K., Lanime, V. A. F., and Schiller, P. H., 1996, Contextual modulation in primary visual cortex, J. Neurosci. 16: 7376–7389.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Esther Peterhans
    • 1
  1. 1.Department of NeurologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations