Extrastriate Cortex in Primates pp 295-333 | Cite as
The Functional Architecture of Area V2 in the Macaque Monkey
Abstract
One of the most striking aspects of the primate visual cortex is the remarkable extent of internal structure and organization within V 1, and the second visual area, V2. Architecturally, V2 is composed of an interleaved series of bands specialized for the processing of the visual submodalities of form, color, and depth, known as the V2 stripes. The unique position of V2 in the visual hierarchy at the juncture of the higher visual pathways suggests that its segregated functional architecture facilitates the channeling of visual input into these pathways for handling “what” and “where” visual information. Thus the organization and connectivity of V2 perhaps most clearly embodies the notion of parallel and integrated processing of form, color, motion, and stereopsis, as observed psychophysically in studies of human visual performance. In comparison to primary visual cortex V 1, the architecture and functional role of V2 has only recently been studied in earnest. This chapter reviews the current understanding of the modular organization within stripes, the functional properties of V2 stripes, the visual map with respect to the stripes, and the functional connectivity of V2 stripes with other cortical areas.
Keywords
Receptive Field Squirrel Monkey Macaque Monkey Illusory Contour Striate CortexPreview
Unable to display preview. Download preview PDF.
References
- Allman, J. M., and Kaas, J. H., 1971, Representation of the visual field in striate and adjoining cortex of the owl monkey (Autus trzvirgatus), Brain Res. 35:89–106.Google Scholar
- Allman, J. M., and Kaas, J. II., 1974, ‘Ehe organization of the second visual area (V-11) in the owl monkey: A second order transformation of the visual hemifield, Brain Res. 76: 247–265.Google Scholar
- Amir, Y., Harel, M., and Malach, R., 1993, Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex, f. Comp. Neurol. 334: 19–46.CrossRefGoogle Scholar
- Baizer, J. S., Robinson, I). t., and Dow, B. M., 1977, Visual responses of area 18 neurons in awake, behaving monkey, J. Neurophysiol. 40: 1024–1037.Google Scholar
- Baker, C. L., Hess, R. F., and Zihl, J., 1991, Residual motion perception in a “motion-blind” patient, assessed with limited-lifetimerandom dot stimuli, J. Neurosci. 11: 454–461.PubMedGoogle Scholar
- Blasdel, G. G., and Fitzpatrick, D., 1984, Physiological organization of layer 4 in macaque striate cortex,/ Neurosci. 4: 880–895.Google Scholar
- Brodmann, K., 1909, Vergleic/u’nde Lokalisation.sle/ar der Grosshirnrinde, Barth, Leipzig.Google Scholar
- Bullier, J., and Kennedy, H., 1983, Projection of the lateral geniculate nucleus onto cortical area V2 in the macaque monkey, Exp. Brain Res. 53: 168–172.PubMedCrossRefGoogle Scholar
- Carman, G. J., and Welch, L., 1992, Three-dimensional illusory contours and surfaces, Nature 360: 585–587.PubMedCrossRefGoogle Scholar
- Cavanagh, P., 1989, Multiple analyses of orientation in the visual system, in: Neural Mechanisms nJ Visual Perception (1). M. I.am and C. I). Gilbert, eds.), Portfolio, Woodlands, TX, pp. 261–279.Google Scholar
- Cowey, A., 1964, Projection of the retina on to striate and prestriate cortex in the squirrel monkey, Saimirz sciureus, J. Neurophysiol. 27: 366–393.PubMedGoogle Scholar
- Curcio, C. A., and Hartin, J. K., 1978, Organization of pulvinar afferents to area 18 in the squirrel monkey: Evidence for stripes, Brain Res. 143: 155–161.PubMedCrossRefGoogle Scholar
- Daniel, P. M., and Whitteridge, D., 1961, The representation of the visual field in the cerebral cortex in monkeys,/ Physiol. (tond.) 159: 302–321.Google Scholar
- DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.PubMedCrossRefGoogle Scholar
- DeYoe, E. A., and Van Essen, 1). C., 1988, Concurrent processing streams in monkey visual cortex, Trends Neurosci. 11: 219–226.Google Scholar
- DeYoe, E. A., Hockfield, S., Garren, H., and Van Essen, D. C., 1990, Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey, Visual Neurosci. 5: 67–81.CrossRefGoogle Scholar
- DeYoe, E. A., Felleman, D. J., Van Essen, D. C., and McClendon, E., 1994, Multiple processing streams in occipitotemporal visual cortex, Nature 371: 151–154.PubMedCrossRefGoogle Scholar
- Dobkins, K. R., and Albright, T. D., 1993, What happens if it changes color when it moves? The nature of chromatic input to macaque visual area MI, J. Neurosci. 14: 4854–4870.Google Scholar
- Dow, B. M., Snyder, A. Z., Vautin, R. G., and Bauer, R., 1981, Magnification factor and receptive field size in fovea! striate cortex of the monkey, Exp. Brain Res. 44: 213–228.PubMedCrossRefGoogle Scholar
- Edwards, D. P., Purpura, K. P., and Kaplan, E., (1995), Contrast sensitivity an spatial frequency response of primate cortical neurons in and around the cytochrome blobs, Vision Res. 35: 1501 1523.Google Scholar
- Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1:1–47.Google Scholar
- Ferrera, V. P., Nealey, T. A., and Maunsell, J. H. R., 1992, Mixed parvocellular and magnocellular geniculate signals in visual area V4, Nature 358: 756–758.PubMedCrossRefGoogle Scholar
- Fitzpatrick, D., Itoh, K., and Diamond, I. T., 1983, The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus), J. Neurosci. 3: 673-702.Google Scholar
- Frien, A., Eckhorn, R., Bauer, R., Woelber, T., and Kehr, H., 1994, Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey, NeuroReport,in press.Google Scholar
- Frostig, R. D., Lieke, E. E., Ts’o, D. Y., and Grinvald, A. M., 1990, Cortical functional architecture and local coupling between neuronal activity and the microcirculation revealed by in vivo high-resolution optical imaging of intrinsic signals, Proc. Natl. Acad. Sci. USA 87:6082–6086. Gattass, R.Google Scholar
- Gross, C. G., and Sandell, J. H., 1981, Visual topography of V2 in the macaque, J. Comp. Neurol. 201: 519–539.PubMedCrossRefGoogle Scholar
- Gegenfurtner, K. R., Kiper, D. C., Beusmans, J. M. H., Caradini, M., Zaidi, Q., and Movshon, J. A., 1994, Chromatic properties of neurons in macaque MT, Visual Neurosci. 11: 455–466.CrossRefGoogle Scholar
- Chose, G. M., and Ts’o, D. Y., 1997, Form processing modules in primate area V4, J. Neurophysiol. 77: 2191–2196.Google Scholar
- Gilbert, C. D., and Wiesel, T. N., 1990, The influences of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat, Vision Res. 11:1689–1701.Google Scholar
- Girard, P., and Bullier, J., 1989, Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey, J. Neurophysiol. 62: 1287–1302.PubMedGoogle Scholar
- Gray, C. M., and Singer, W., 1989, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci. USA 86: 1698–1702.PubMedCrossRefGoogle Scholar
- Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., and Wiesel, T. N., 1986, Functional architecture of cortex revealed by optical imaging of intrinsic signals, Nature 324: 361–364.PubMedCrossRefGoogle Scholar
- Grinvald, A., Frostig, R. D., Lieke, E., and Hildesheim, R., 1988, Optical imaging of neuronal activity, Physiol. Rev. 68: 1285–1365.PubMedGoogle Scholar
- Grinvald, A., Lieke, E. E., Frostig, R. D., and Hildesheim, R., 1994, Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex, J. Neurosci. 14: 2545–2568.PubMedGoogle Scholar
- Guld, C., and Bertulis, A., 1976, Representation of fovea in the striate cortex of vervet monkey, cercopithecus aethiops pygerythrus, Vision Res. 16: 629–631.PubMedCrossRefGoogle Scholar
- Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., Herscovitch, P., Schapiro, M. B., and Rapoport, S. I., 1991, Dissociation of object and spatial visual processing pathways in human extrastriate cortex, Proc. Natl. Acad. Sci. USA 88: 1621–1625.PubMedCrossRefGoogle Scholar
- Hockfield, S., and McKay, R. D. G., 1983, A surface antigen expressed by a subset of neurons in the vertebrate central nervous system, Proc. Natl. Acad. Sci. USA 88: 1621–1625.Google Scholar
- Horton, J., 1984, Cytochrome oxidase patches: A new cytoarchitectonic feature of monkey visual cortex, Phil. Trans. R. Soc. Loud. 304: 199–253.CrossRefGoogle Scholar
- Horton, J., and Hubel, D. H., 1981, A regular patchy distribution of cytochrome-oxidase staining in primary visual cortex of the macaque monkey, Nature 292: 762–764.PubMedCrossRefGoogle Scholar
- Hubel, D. H., and Livingstone, M. S., 1984, Complex-unoriented cells in a subregion of primate area 18, Nature 315: 325–327.CrossRefGoogle Scholar
- Hubel, D. H., and Livingstone, M. S., 1984, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci. 7: 3378–3415.Google Scholar
- Hubel, D. H., and Wiesel, T. N., 1970, Cells sensitive to binocular depth in area 18 of the macaque monkey cortex, Nature 225: 41–42.PubMedCrossRefGoogle Scholar
- Hubel, D. H., and Wiesel, T. N., 1974, Uniformity of monkey satiate cortex: A parallel relationship between field size, scatter, and magnification factor, J. Comp. Neurol. 158: 295–305.PubMedCrossRefGoogle Scholar
- Hubel, D. H., and Wiesel, T. N., 1977, Functional architecture of macaque monkey visual cortex, Proc. R. Soc. Lond. B 198: 1–59.PubMedCrossRefGoogle Scholar
- Hubel, D. H., Wiesel, T. N., and LeVay, S., 1974, Visual field representation in layer IVC of monkey striate cortex, in: Society for Neuroscience, 4th Annual Meeting, St. Louis, Abstract 264.Google Scholar
- Humphrey, A. L., and Hendrickson, A. E., 1983, Background and stimulus-induced patterns of high metabolic activity in the visual cortex (area 17) of the squirrel and macaque monkey, J. Neurosci. 3: 345–358.PubMedGoogle Scholar
- Kennedy, H., Bullier, J., 1985, A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey, J. Neurosci. 5: 2815–2830.PubMedGoogle Scholar
- Knierem, J. J., and Van Essen, C. D., 1992, Neuronal responses to static texture patterns in area VI of the alert macaque monkey,./. Neurophysiol. 67: 961–980.Google Scholar
- Krubitzer, L. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161–165.PubMedCrossRefGoogle Scholar
- Krubitzer, L. A., and Kaas, J. H., 1990a, Cortical connections of M“1” in four species of primates: Areal, modular, and retinotopic patterns, Visual Neurosci. 5: 165–204.CrossRefGoogle Scholar
- Krubitzer, L., and Kaas, J. H., 19906, Convergence of processing channels in the extrastriate cortex of mnkeys, Visual Neurosci. 5: 609–613.Google Scholar
- Lachica, E. A., Beck, P. D., and Casagrande, V. A., 1992, Parallel pathways in macaque monkey striate cortex: Anatomically defined columns in layer Ill, Proc. Natl. Acad. Sci. USA 89: 3566-3570.Google Scholar
- Lamme, V. A., 1995, The neurophysiology of figure—ground segregation in primary visual cortex,/ Neurosci. 15: 1605–1615.Google Scholar
- Landisman, C. E., Roe, A. W., and Ts’o, I). Y., 1994, The relationship of receptive field coverage to functional modules in primate V1, Soc. Neurosci. Abstr. 20: 1477.Google Scholar
- Lee, B. B., Martin, P. R., and Valberg, A., 1988, The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina, J. Physiol. 404: 323–347.PubMedGoogle Scholar
- Lennie, P., Krauskopf, J., and Sclar, G., 1990, Chromatic mechanisms in striate cortex of macaque,/ Neurosci. 10: 649–669.Google Scholar
- LeVay, S., and Voigt, “1., 1988, Ocular dominance and disparity coding in cat visual cortex, Visual Neurosci. 1:395–414. Google Scholar
- Leventhal, A. G., Thompson, K. G., Liu, D., Zhou, Y., and Ault, S. J., 1995, Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex, J. Neurosci. 15: 1808–1818.PubMedGoogle Scholar
- Levitt, J. B., Kiper, D. C., and Movshon, J. A., 1994a, Receptive fields and functional architecture of macaque V2, /. Neurophysiol. 71: 2517–2542.Google Scholar
- Levitt, J. B., Yoshioka, “1., and Lund, J. S., 1994b, Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams, J. Comp. Neurol. 342: 551–570.Google Scholar
- Levitt, J. B., Yoshioka, “f., and Lund, J. S., 1995, Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey, Exp. Brain Res. 104: 419–430.Google Scholar
- Livingstone, M. S., and D. 11., 1984, Anatomy and physiology of a color system in the primate visual cortex, /. Neurosci. 4: 309–356.Google Scholar
- Livingstone, M. S., and Hubel, D. H., 1987a, Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey, J. Neurosci. 7: 3371–3377.Google Scholar
- Livingstone, M. S., and Hubel, 1). H., 19876, Psychophysical evidence for separate channels for the perception of form, color, and movement, and depth, /. Neurosci. 7:3416–3468.Google Scholar
- Livingstone, M., and Hubel, D., 1988, Segregation of form, color, movement, and depth: Anatomy, physiology, and perception, Science 240: 740–749.Google Scholar
- Lund, J. S., Hendrikson, A. E., Ogren, M. P., and Tobin, E. A., 1981, Anatomical organization of primate visual cortical area V2, J. Comp. Neurol. 202: 19–45.PubMedCrossRefGoogle Scholar
- Malach, R., Amir, Y., Haret, M., and Grinvald, A., 1993, Relationship between intrinsic connections and functional architecture revealed by optical imaging and in-vitro targeted biocytin injections in primate striate cortex, Proc. Natl. Acad. Sci. USA 90: 10469–10473.PubMedCrossRefGoogle Scholar
- Malach, R.,]botell, R. B. H., and Malonek, D., 1994, Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2, Cerebral Cortex 4: 151–165.CrossRefGoogle Scholar
- Maunsell, J. H. R., and Gibson, J. R., 1992, Visual response latencies in striate cortex of the macaque monkey, /. Neurophysiol. 68: 1332–1344.Google Scholar
- Maunsell, J. H. R., and Van Essen, 1). C., 1983, The connections of the middle temporal visual area (MT) in the macaque monkey, J. Neurosci. 3: 2563–2586.Google Scholar
- Maunsell, J. H. R., Nealy, “l’. A., and Depriest, D. D., 1991, Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey,/ Neurosci. 10: 3323–3334.Google Scholar
- Merigan, W. H., 1989, Chromatic and achromatic vision of macaques: Role of the P pathway, J. Neurosci. 9: 776–783.PubMedGoogle Scholar
- Merigan, W. H., Maunsell, J. H. R., 1993, How parallel are the visual pathways? Anno. Rev. Neurosci. 16: 369–402.CrossRefGoogle Scholar
- Merigan, W. H., Nealey,’1’. A., and Maunsell, J. H. R., 1993, The effects of lesions of cortical area V2 in macaques, J. Neurosci. 13: 3180–3191.Google Scholar
- Mignard, M., and Malpeli, J. G., 1991, Paths of information flow through visual cortex, Science 251: 1249–1251.PubMedCrossRefGoogle Scholar
- Morgan, M. J., and Aiba,’1. S., 1985, Positional acuity with chromatic stimuli, Vision Res. 25: 689–695.PubMedCrossRefGoogle Scholar
- Munk, M. H., J., Nowak, L. G., Girard, P., Chounlamountri, N., and Bullier, J. 1995, Visual latencies in cytochrome oxidase bands of macaque area V2, Proc. Nall. Acad. Sc;. USA 92: 988–992.Google Scholar
- Nakamura, H., Gatt.ass, R., Desimone, R., and Ungcrleidcr, L. G., 1993, ‘Ehe modular organization of projections from areas V I and V2 to areas V4 and TEO in macaques,/ Neurosci. 13: 3681–3691.Google Scholar
- Nealey, T. A., Ferrera, V. P., Maunsell, J. H. R., 1991, Magnocellular and parvoccllular contributions to the ventral extrastriate cortical processing stream, Soc. Neurosci. Abstr. 17: 525.Google Scholar
- Nelson, J. I., Salin, P. A., Munk, 11. J., Arzi, M., and Bullier, J., 1992, Spatial and temporal coherence in cortico-cortical connections: A cross correlation study in areas 17 anti 18 in the cat, Visual Neurosci. 9:21 —37.Google Scholar
- Nowak, L. G., Munk, M. H. J., Girard, P., and Bullier, J., 1995a, Visual latencies in areas VI and V2 of the macaque monkey, Visual Neurosci. 12: 371–384.CrossRefGoogle Scholar
- Nowak, L. G., Munk, M. H. J., Nelson, J. L, James, A. C., and Buller, J., 19956, The structural basis of cortical synchronization. L Three types of interhemispheric coupling, J. Neurophysiol. 74: 2379–2400.Google Scholar
- Ogren, M. P., and Hendrickson, A. E., 1977, The distribution of pulvinar terminals in visual areas 17 and 18 of the monkey, Brain Res. 137: 343–350.PubMedCrossRefGoogle Scholar
- Peterhans, E., and von der Heydt, R., 1989, Mechanisms of contour perception in monkey visual cortex. 11. Contours bridging gaps, J. Neurosci. 9: I749–1763.Google Scholar
- Pcterhans, E., and von der Heydt, R., 1993, Functional organization of area V2 in the alert macaque, Eur. J. Neurosci. 5: 509–524.CrossRefGoogle Scholar
- Poggio, G. F., and Fischer, B., 1977, Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey, J. Neurophysiol. 40: 1392–1405.PubMedGoogle Scholar
- Raiguel, S. E., Lagae, I.., Bulyas, B., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas V I, V2, and V5, Brain Res. 493: 155–159.PubMedCrossRefGoogle Scholar
- Rockland, K. S., 1985, A reticular pattern of intrinsic connections in primate area V2 (area 18), J. Comp. Neurol. 235: 467–478.PubMedCrossRefGoogle Scholar
- Rockland, K. S., 1992, Laminar distribution of neurons projecting from area V 1 to V2 in macaque and squirrel monkeys, Cerebral Cortex 2: 38–47.PubMedCrossRefGoogle Scholar
- Rockland, K. S., and Pandya, 1). N., 1979, Laminar origins and terminations of cortical connections to the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.PubMedCrossRefGoogle Scholar
- Rockland, K. S., and Virgo, A., 1989, Terminal arbors of individual “feedback” axons projecting from area V2 to VI in the macaque monkey: A study using imnunohistochemistry of anterogradely transported Phaseolus vu/gari.s-leucoagghrtinin, J. Comp. Neural. 285: 54–72.CrossRefGoogle Scholar
- Rockland, K. S., and Virga, A., 1990, Organization of individual cortical axons projecting from area V I (area 17) to V2 (area 18) in the macaque monkey, Visual Neurosci. 4: 11–28.CrossRefGoogle Scholar
- Rockland, K. S., Saleem, K. S., and Tanaka, K., 1994, Divergent feedback connections from areas V4 and TEO in the macaque, Visual Neurosci. 11: 579–600.CrossRefGoogle Scholar
- Roe, A. W., and ‘I’s’o, D. Y., 1992, Functional connectivity between VI and V2 in the primate, Soc. Neurosci. Abstr. 18: 11.Google Scholar
- Roe, A. W., and Ts’o, 1). Y., 1994, Relationships between topographic maps in VI and V2 revealed by optical imaging with spot stimuli, Soc. Neurosci. Abstr. 20: 840.Google Scholar
- Roe, A. W., and’l’s’o, 1). Y., 1995, Visual topography in primate V2: Multiple representation across functional stripes, J. Neurosci. 15: 3689–3715.Google Scholar
- Roc, A. W., and ‘l’s’o, D. Y., 191)7, Functional connectivity between primate VI and V2, submitted. Rosa, M. G. P., Sousa, A. P. B., and Gatass, R., 1988, Representation of the visual field in the second visual area in the Cebu monkey, J. Comp. Neural. 275: 326–345.Google Scholar
- Sakitt, B., 1982, Why the cortical magnification factor in rhesus cannot be isotropic, Vision Res. 22: 417–421.PubMedCrossRefGoogle Scholar
- Sandell, J. 11., and Schiller, P. H., 1982, Effect of cooling area 18 on striate cortex cells in the squirrel monkey, J. Neurophysiol. 48: 38–48.PubMedGoogle Scholar
- Schiller, P. H., and Malpeli, G. J., 1977, The effect of cooling area 18 on striate cortex cells in the squirrel monkey, Brain Res. 126: 366–369.PubMedCrossRefGoogle Scholar
- Schiller, P. H., Logothetis, N. K., and Charles, E. R., 1990, Role of the color-opponent and broadband channels in vision, Visual Neurosci. 5: 321–346.CrossRefGoogle Scholar
- Sereno, M. I., McDonald, C. ‘F., and Allman, J. M., 1994, Analysis of retinotopic maps in extrastriate cortex, Cerebral Cortex 4: 601–620.CrossRefGoogle Scholar
- Sereno, M. I., Dale, A. M., Repas, J. B., Lwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., and Tootell, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268: 889–893.PubMedCrossRefGoogle Scholar
- Shapley, R., 1990, Visual sensitivity and parallel retinocortical channels, Annu. Rev. Psychol. 41: 635658.Google Scholar
- Shipp, S., and Zeki, S., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey, Nature 315: 322–325.PubMedCrossRefGoogle Scholar
- Shipp, S., and Zeki, S., 1989, The organization of connections between areas V5 and V2 in macaque monkey visual cortex, Eur. J. Neurosci. 1: 333–354.PubMedCrossRefGoogle Scholar
- Spatz, W. B., Tigges, J., and Tigges, M., 1970, Subcortical projections, cortical associations, and some intrinsic laminar connections of the striate cortex in the squirrel monkey (Saimiri), J. Comp. Neural. 140: 155–174.CrossRefGoogle Scholar
- Talbot, S. A., and Marshall, W. H., 1941, Physiological studies on neural mechanisms of visual localization and discrimination, Am. J. Oplhalmol. 24: 1255–1263.Google Scholar
- Tigges, J., Tigges, M., Anschel, S., Cross, N. A., Letbetter, W. D., and McBride, R. L., 1981, Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in the squirrel monkey (Saimiri), J. Comp. Neural. 202: 539–560.CrossRefGoogle Scholar
- Iootell, R. B. H., Silverman, M. S., De Valois, R. L., and Jacobs, G. H., 1983, Functional organization of the second cortical visual area in primates, Science 220: 737–739.CrossRefGoogle Scholar
- Footell, R. B. H., and Hamilton, S. L., 1989, Functional anatomy of the second visual area (V2) in the macaque, J. Neurosci. 9: 2620–2644.Google Scholar
- Footell, R. B. H., Switkes, E., Silverman, M. S., and Hamilton, S. L., 1988a, Functional anatomy of macaque striate cortex. 11. Retinotopic organization, J. Neurosci. 8: 1531–1568.Google Scholar
- lootell, R. B. H., Silverman, M. S., Hamilton, S. L., DeValois, R. L., and Switkes, E., 1988b, Functional anatomy of macaque striate cortex. Ill. Color, J. Neurosci. 8: 1569–1593.Google Scholar
- Tootell, R. B. H., Reppas,J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, F. J., Rosen, B. R., and Belliveau, J. W., 1995, Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging, J. Neurosci. 15: 3215–3230.Google Scholar
- Ts’o, D. Y., and Gilbert, C. D., 1988, The organization of chromatic and spatial interactions in the primate striate cortex, J. Neurosci. 8: 1712–1727.PubMedGoogle Scholar
- Ts’o, D. Y., Gilbert, C. D., and Wiesel, T. N., 1986, Relationships between horizontal interactions and functional architecture in the cat striate cortex as revealed by cross-correlation analysis, J. Neurosci. 6: 1 160–1170.Google Scholar
- Ts’o, D. Y., Frostig, R. D., Lieke, E. E., and Grinvald, A., 1990a, Functional organization of primateGoogle Scholar
- visual cortex revealed by high resolution optical imaging, Science 249:417–420.Google Scholar
- Ts’o, I). Y., Gilbert, C. D., and Wiesel, T. N., 19901), Functional architecture of color and disparity inGoogle Scholar
- visual area 2 of macaque monkey, Soc. Neurosci. Abstr. 16:293.Google Scholar
- Ts’o, D. Y., Gilbert, C. 1)., and Wiesel, T. N., 1991, Orientation selectivity of and interactions between color and disparity subcompartments in area V2 of macaque monkey, Soc. Neurosci. Abstr. 17: 1089.Google Scholar
- Ts’o, I). Y., Roe, A. W., and Shey, J., 1993, Functional connectivity within V 1 and V2: Patterns and dynamics, Soc. Neurosci. Abstr. 19: 1499.Google Scholar
- Ts’o, I). Y., Gilbert, C. D., and Roe, A. W., 1997, Functional architecture of color and disparity processing in primate visual area 2, submitted.Google Scholar
- Vaina, L. M., Lemay, M., Bienfang, D. C., Choi, A. Y., and Nakayama, K., 1990, Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: A case study, Visual Neurosci. 5: 353–369.CrossRefGoogle Scholar
- Valverde, F., 1985, The organizing principles of the primary visual cortex in the monkey, in: Cerebral Cortex, Volume 3, Visual Cortex (E. G., Jones, and A. A. Peters, eds.), Plenum Press, New York, pp. 207–257.Google Scholar
- Van Essen, D. C., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex, Volume 3, Visual Cortex (E. G., Jones, and A. A. Peters, eds.), Plenum Press, New York, pp. 259–329.Google Scholar
- Van Essen, 1). C., and Zeki, S. M., 1978, The topographic organization of rhesus monkey prestriate cortex, J. Physiol. (Lond.) 277: 193–226.Google Scholar
- Van Essen, 1). C., and Maunsell, J. H. R., 1983, Hierarchical organization and functional streams in the visual cortex, Trends Neurosci. 6: 370–375.Google Scholar
- Van Essen, I). C., Newsome, W. T., and Maunsell, J. H. R., 1984, The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability, Vision Res. 24: 429–448.Google Scholar
- Van Essen, 1). C., Newsome, W. T., Maunsell, J. H. R., and Bixby, J. L., 1986, The projections from striate cortex (VI) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries, and patchy connections,/ Comp. Neurol. 244: 451–480.Google Scholar
- Von der Heydt, R., and Peterhans, E., 1989, Mechanisms of contour perception in monkey visual cortex. L Lines of pattern discontinuity,/ Neurosci. 9: 173I - 1748.Google Scholar
- Weller, R. E., and Kaas, J. IL, 1983, Retinotopic patterns of connections of area 17 with visual areas V-II and MT in macaque monkeys, J. Comp. Neural. 220: 253–279.CrossRefGoogle Scholar
- Wiesel, T. N., and Hubel, I). H., 1966, Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,/ Neurophys. 29: 1 1 I5–1156.Google Scholar
- Wong-Riley, M. “f. T., 1979a, Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry, Brain Res. 171: 11–28.Google Scholar
- Wong-Riley, M. ‘I’. ‘I’., 1979b, Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys, Brain Res. 162: 201–217.Google Scholar
- Wong-Riley, M. T. T., Hevner, R. F., Cutlan, R., Earnest, M., Egan, R., Frost, J., and Nguyen, T., 1993, Cytochrome oxidase in the human visual cortex: Distribution in the developing and the adult brain, Visual Neurosci. 10: 41–58.CrossRefGoogle Scholar
- Zeki, S., 1969, The secondary visual cortex of the monkey, Brain Res. 13: 197–226.PubMedCrossRefGoogle Scholar
- Zeki, S., 1990, Functional specialization in the visual cortex: The generation of separate constructs and their multistage integration, in: Signal and Sense: Local and Global Order in Perceptual Maps ( G. M. Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley-Liss, New York, pp. 85–130.Google Scholar
- Zeki, S., and Shipp, S., 1987, Functional segregation within area V2 of macaque monkey visual cortex, in: Seeing Contour and Color (J. J. Kulikowski, C. M. Dickinson, and 1. J. Murray, eds.), Pergamon Press, Oxford, pp. 120–124.Google Scholar
- Zeki, S., Watson, J. D. G., Lueck, C. J. Friston, K. J., Kennard, C., and Frackowiak, R. S. J., 1991, A direct demonstration of functional specialization in human visual cortex, J. Neurosci. 11: 64 1649.Google Scholar