Elements of Cortical Architecture

Hierarchy Revisited
  • Kathleen S. Rockland
Part of the Cerebral Cortex book series (CECO, volume 12)


Extrastriate visual cortex consists of multiple areas. As reviewed elsewhere (Kaas, 1989; Colby and Duhamel, 1991; and several chapters in this volume), there are still many questions concerning specific boundaries and subdivisions, and the criteria for area identification themselves remain under discussion. How areas interact is even less well known and is very much a topic of active research. Is there an overall architecture? Are there patterns of sequential or synchronous coactivation?


Visual Cortex Pyramidal Neuron Macaque Monkey Middle Temporal Feedback Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amir, Y., haret, M., and Malach, R., 1993, Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex, J. Coma. Neural. 334: 19–64.CrossRefGoogle Scholar
  2. Andersen, R. A., Asanuma, C., Essick, G., and Siegel, R. M., 1990, Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule, J. Comp. Neurol. 296: 65–113.CrossRefGoogle Scholar
  3. Anderson, I. C., Martin, K. A. C., and Whitteridge, D., 1993, Form, function, and intracortical projections of neurons in the striate cortex of the monkey Macacus nemestrinus, Cerebral Cortex 3: 412–420.PubMedCrossRefGoogle Scholar
  4. Beaulieu, C., Kisvardy, Z., Somogyi, P., Cynader, M., and Cowey, A., 1992, Quantitative distribution of GABA-immunopositive and immunonegativc neurons and synapses in the monkey striate cortex area 17), Cerebral Cortex 2: 295–309.PubMedCrossRefGoogle Scholar
  5. Benevento, L. A., Rezak, M., 1976, The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey Macaw mulatta): An autoradiographic study, Brain Res. 108: 1–24.PubMedCrossRefGoogle Scholar
  6. Blasdel, G. G., and Fitzpatrick, I., 1984, Physiological organization of layer 4 in macaque striate cortex, J. Neurosci. 4: 880–895.Google Scholar
  7. Blasdel, G. G., and Lund, I. S., 1983, Termination of afferent axons in macaque striate cortex, J. Neurosci. 3: 1389–1413.PubMedGoogle Scholar
  8. Bonhoeffer, T., Kim, D.-S., Malonek, D., Shoham, I., and Grinvald, A., 1995, Optical imaging of the layout of functional domains in area 17 and across the area 17 J18 border in cat visual cortex, Fur. J. Neurosci. 7: 1973–1988.CrossRefGoogle Scholar
  9. Boussaoud, D., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque, J. Comp. Neurol. 296: 462–495.PubMedCrossRefGoogle Scholar
  10. Bressler, S. I., 1995, Large-scale cortical networks and cognition, Brain Res. Rev. 20: 288–304.PubMedCrossRefGoogle Scholar
  11. Bressler, S. L., 1996, Interareal synchronization in the visual cortex, Behay. Brain Res. 76: 37–49.CrossRefGoogle Scholar
  12. Bugbee, N. M., and Goldman-Rakic, P. S., 1983, Columnar organization of corticocortical projections in squirrel and rhesus monkeys: Similarity of column width in species differing in cortical volume, J. Comp. Neurol. 220: 355–364.PubMedCrossRefGoogle Scholar
  13. Bullier, J., and Nowak, L. G., 1995, Parallel versus serial processing: New vistas on the distributed organization of the visual system, Curr. Opin. Neurobiol. 5: 497–503.PubMedCrossRefGoogle Scholar
  14. Bullier, J., Girard, P., and Salin, P. A., 1994, lhe role of area 17 in the transfer of information to extrastriate visual cortex, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates, A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 301–330.Google Scholar
  15. Casagrande, V. A., and Kaas, J. H., 1994, The afferent, intrinsic, and efferent connections of primary cortex in primates, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 201–259.Google Scholar
  16. Celebrini, S., Thorpe, S., Trotter, Y., and Imbert, M., 1993, Dynamics of orientation coding in area VI of the awake primate, Visual Neurosci. 10: 811–826.CrossRefGoogle Scholar
  17. Colby, C. L., and Duhamel, J. R., 1991, Heterogeneity of extrastriate visual areas and multiple parietal areas in the macaque monkey, Neuropsychologia 29: 517–537.PubMedCrossRefGoogle Scholar
  18. Curcio, C. A., and Harting, J. K., 1978, Organization of pulvinar afferents to area 18 in the squirrel monkey: Evidence for stripes, Brain Res. 143: 155–161.PubMedCrossRefGoogle Scholar
  19. Cusick, C. G., Steindler, I. A., and Kaas, J. H., 1985, Corticocortical and collateral thalamocortical connections of postcentral somatosensory cortical areas in squirrel monkeys: A double-labeling study with radiolabeled wheatgerm agglutinin conjugated to horseradish peroxidase, Somalo.sens. Res. 3: 1–31.Google Scholar
  20. Damasio, A., 1989,1 he brain binds entities and events by multiregional activation from convergence zones, Neural Comput. 1: 123–132.Google Scholar
  21. Damasio, A., and Damasio, H., 1994, Cortical systems for retrieval of concrete knowledge: The convergence zone framework, in: Large-.Scale Neuronal Theories of the Brain C. Koch, and J. L. Davis, eds.), MIT Press, Cambridge, MA, pp. 61–74.Google Scholar
  22. DeFelipe, J., and Farinas, L, 1992, lhe pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs, Prog. Neurobiol. 39: 563–607.Google Scholar
  23. De Felipe, J., Conley, M., and joues, E. G., 1986, Long-range focal collateralizat ion of axons arising from cortico-cortical cells in monkey sensory-motor cortex, J. Neurosci. 6: 3749–3766.Google Scholar
  24. deLima, A. D., Voigt, T., and Morrison, J. H., 1990, Morphology of the cells within the inferior temporal gyrus that project to the prefrontal cortex in the macaque monkey, J. Comp. Neurol. 296: 159–172.CrossRefGoogle Scholar
  25. Distler, C., Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1993, Cortical connections of inferior temporal area TEO in macaque monkeys, J. Comp. Neurol. 334: 125–150.PubMedCrossRefGoogle Scholar
  26. Doty, R. W., 1983, Nongeuiculate afferents to striate cortex in macaques, J. Comp. Neurol. 218: 159–173.PubMedCrossRefGoogle Scholar
  27. Felleman, D. J., and Van Essen, I. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1: 1–47.PubMedCrossRefGoogle Scholar
  28. Fitzpatrick, I., Usrey, W. M., Shofield, B. R., and Einstein, G., 1994, File sublamin:uorganization of corticogeuiculate neurons in layer 6 of macaque striate cortex, Visual Neurosci. 11:307–3I6.Google Scholar
  29. Florence, S. I., and Casagrande, V. A., 1987, The organization of individual afferent axons in layer IV of striate cortex of a primate Galago senegalen.sis), J. Neurosci. 7: 3850–3868.PubMedGoogle Scholar
  30. Florence, S. I., and Casagrande, V. A., 1990, The development of geniculocortiral axon arbors in a primate, Visual Neurosci. 5: 291–311.CrossRefGoogle Scholar
  31. Freund, T. F., Martin, K. A. C., Soltesz, I., Somogyi, P., and Whitteridge, D., 1989, Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey, J. Comp. Neurol. 289: 315–336.PubMedCrossRefGoogle Scholar
  32. Fries, W., and Distel, H., 1983, Large layer VI neurons of monkey striate cortex Meynert cells) project to the superior colliculus, Proc. R. Soc. Loud. Biol.) 219: 53–59.CrossRefGoogle Scholar
  33. Fries, W., Keizer, K., and Kuypers, H. G. J. M., 1985, I.arge layer VI cells in macaque striate cortex Meynert cells) project to both superior colliculus and prestriate area V5, Exp. Brain Res. 58: 613–616.PubMedCrossRefGoogle Scholar
  34. Friston, K. J., Frith, C. D., Fletcher, P., Liddle, P. F., and Frackowiak, R. S. J., 1996, Functional topography: Multidimensional scaling and functional connectivity in the brain, Cerebral Cortex 6: 156–164.PubMedCrossRefGoogle Scholar
  35. Fujita, I., and Fujita, T., 1996, Intrinsic connections in the macaque inferior temporal cortex, J. Comp. Neurol. 368: 467–486.PubMedCrossRefGoogle Scholar
  36. Galen, M. P., and Darian-Smith, I., 1994, Multiple corticospinal neuron populations in the macaque monkey are specified by their unique cortical origins, spinal terminations, and connections, Cerebral Cortex 4: 166–194.CrossRefGoogle Scholar
  37. Gaspar, P., Stepuiewska, I., and Kaas, J. H., 1992, Topography and collateralizatiot of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys, J. Comp. Neurol. 325: 1–21.PubMedCrossRefGoogle Scholar
  38. Gerfen, C. R., and Sawchenko, P. E., 1984, An anterograde neuroamatomical tracing method that shows the detailed morphology of neurons, their axons and terminals: Immunohistochemical localization of an axonally transported plant lectim. Phaseolus vulgaris leucoagglut.inin PHA-L), Brain Res. 290: 219–238.PubMedCrossRefGoogle Scholar
  39. Gilbert, C. I., and Wiesel, T. N., 1983, Clustered intrinsic connections in cat visual cortex, J. Neurosci. 3: 1116–1133.PubMedGoogle Scholar
  40. Goldman-Rakic, P., I988,Eopography of cognition: Parallel distributed networks in primate association cortex, Anon. Rev. Neurosci. 11: 137–156.Google Scholar
  41. Graybiel, A. M., and Berson, I. M., 1981, On the relation between transthalamic and transcortical pathways in the visual system, in: The Organization of the Cerebral Cortex F. O. Schmitt, F. G. Worden, vol F. Dennis, eds.), Mli Press, Cambridge, MA, pp. 285–319.Google Scholar
  42. Grinvald, A., I.ieke, E. E., Frostig, R. I., and Hildesheim, R., 1994, Cortical point: spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex, J. Neurosci. 14: 2545–2568.Google Scholar
  43. Guillery, R. W., 1995, Anatomical evidence concerning the role of the thalamus in corticocortical communication: A brief review, J. Anal. 185: 583–592.Google Scholar
  44. Haberly, L. B., and Presto, S., 1986, Ultrastructural analysis of synaptic relationships of intra- cellularly stained pyramidal cell axons in piriform cortex, J. Comp. Neural. 284: 464–474.CrossRefGoogle Scholar
  45. Harting, J. K., Updyke, B. V., and Lieshut, I. P. V., 1992, Corticotectal projections in the cat: Anterograde transport studies of twenty-five cortical areas, J. Comp. Neurol. 324: 379–414.PubMedCrossRefGoogle Scholar
  46. I Iashikawa, T., Molinari, M., Rauscll, 1:., and Jones, E. G., 1995, Patchy and laminar terminations of medial geniculate axons in monkey auditory cortex, J. comp. Neurol. 362:195–208.Google Scholar
  47. Hilgetag, C.-C., ONeill, M. A., and Young, M. P., 1996, Indeterminate organization of the visual system, Science 271: 776–777.PubMedCrossRefGoogle Scholar
  48. Hof, P. R., and Morrison, J. II., 1995, Neurofilanent protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis, J. ]owp. Neurol. 352: I61–186.Google Scholar
  49. Hof, P., Ungerleider, L., Webster, M., Gattass, R., Adapts, M., Sailstad, I., and Morrison, J., 1996, Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways, J. Comp. Neural. 376: 112–127.CrossRefGoogle Scholar
  50. Ilorikawa, K., and Armstrong, W. E., 1988, A versatile means of intracellular labeling: Injection of biocytin and its detection with avidin conjugates, Neurosci. Meth. 25: 1–11.Google Scholar
  51. Houzel, J.-C., Milleret, C., and Innocenti, G., 1994, Morphology of callosal axons interconnecting areas 17 and 18 of the cat, Eur. J. Neurosci. 6: 898–917.PubMedCrossRefGoogle Scholar
  52. Innocenti, G. M., Lehmann, P., and Ilouzel, J.-C., 1994, Computational structure of visual callosal axons, Ear. J. Neurosci. 6:9I8–935.Google Scholar
  53. Ishai, A., and Sagi, I., 1995, Common mechanisms of visual imagery and perception, Science 268: 1722–1774.CrossRefGoogle Scholar
  54. Iwai, E., and Yukie, M., 1987, Antygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques Macaca fùscala, M. mulatta, and M. fascicularis), J. Comp. Neural. 261: 362–387.CrossRefGoogle Scholar
  55. Johnson, R. R., and Burkhalter, A., 1996, Microcircuitry of forward and feedback connections within rat visual cortex, J. Camp. Neural. 368: 383–398.CrossRefGoogle Scholar
  56. Jones, E. G., 1984, Identification and classification of intrinsic circuit elements in the neocortex, in: Dynamic Aspects of Neorortical Organization G. M. Edelman, W. M. Cowan, and W. E. Gall, eds.), Wiley, New York, pp. 7–40.Google Scholar
  57. Jones, E. G., 1986, Connectivity of the primate sensory-motor cortex, in: Cerebral Cortex, Volume 5, Sensory-Motor Areas and Aspects of Cortical Connectivity E. G. Jones and A. Peters, eds.), Plenum Press, New York, pp. 113–183.CrossRefGoogle Scholar
  58. Kaas, J. H., 1989, Why does the brain have so many visual areas? J. Cognitive Neurosci. 1: 1211 35.Google Scholar
  59. Kaas, J. I I. and Huerta, M. F., 1988, Subcortical visual system of primates, in: Comparative Primate Biology, Volume 4 II. P. Steklis, ed.), Liss, New York, pp. 327–391.Google Scholar
  60. Kennedy, H., and Bullier, J., 1985, A double-labeling investigation of the afferent connectivity to cortical areas VI and V2 of the macaque monkey, J Neurosci. 5: 2815–2830.Google Scholar
  61. King, M. A., Lewis, P. M., Hunter, B. E., and Walker, D. W., 1989, Biocytin: A versatile anterograde neuroanatomical tract-tracing alternative, Brain Res. 497: 361–367.PubMedCrossRefGoogle Scholar
  62. Kisvardy, Z. F., and Eysel, Y. T, 1992, Cellular organization of reciprocal patchy networks in layer III of cat visual cortex area 17), Neuroscience 46: 275–286.CrossRefGoogle Scholar
  63. Koch, C., Rapp, M., and Segev, I., 1996, A brief history of time constants), Cerebral Cortex 6:93–101. Kondo, H., Hashikawa, T., Tanaka, K., and Jones, E. G., 1994, Neurochemical gradient along the monkey occipito-temporal cortical pathway, NeuroReport 5: 613–616.Google Scholar
  64. Kosslyn, S. M., Thompson, W. I., Kim, I. J., and Alpert, N. M., 1995, Topographic representations of mental images in primary visual cortex, Nature 378: 496–498.PubMedCrossRefGoogle Scholar
  65. Krubitzer, L. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161–165.PubMedCrossRefGoogle Scholar
  66. Krubitzer, L. A., and Kaas, J. H., 1990, Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns, Visual Neurosci. 5: 165–204.CrossRefGoogle Scholar
  67. Kuypers, H. G. J. M., Szwarcbart, M. K., Mishkin, M., and Rosvold, H. E., 1965, Occipitotemporal corticocortical connections in the rhesus monkey, Exp. Neural. 11: 245–262.CrossRefGoogle Scholar
  68. Lachicha, E. A., Beck, P. D., and Casagrande, V. A., 1992, Parallel pathways in macaque monkey striate cortex: Anatomically defined columns in layer III, Proc. Natl. Acad. Sci. USA 89: 3566–3570.CrossRefGoogle Scholar
  69. Levitt, J. B., Yoshioka, L, and Lurrd, J. S., 1995, Connections between the pulvinar complex and cytochrome oxidise-defined compartments in visual area V2 of macaque monkey, Exp. Brain Res. 104: 419–430.PubMedCrossRefGoogle Scholar
  70. Lund, J. S., Lund, R. D., Hendrickson, A. E., and Fuchs, A. F., 1975, The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by the retrograde transport of horseradish peroxidase, J. Comp. Neural. 164: 287–304.CrossRefGoogle Scholar
  71. Lund, J. S., Hendrickson, A. E., Ogren, M. P., and Tobin, E. A., 1981, Anatomical organization of primate visual cortex area VII, J. Comp. Neurol. 202: 19–45.PubMedCrossRefGoogle Scholar
  72. Lund, J. S., Yoshioka, T., and Levitt, J. B., 1993, Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex, Cerebral Cortex 3: 148–162.PubMedCrossRefGoogle Scholar
  73. Lund, J. S., Yoshioka, T., and Levitt, J. B., 1994, Substrates for interlaminar connections in area V I of macaque monkey cerebral cortex, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 37–60.Google Scholar
  74. Lund, J. S., Wu, Q., Hadingham, P. T., and Levitt, J. B., 1995, Cells and circuits contributing to functional properties in area V 1 of macaque monkey cerebral cortex: Bases for neuro-anatomically realistic models, J. Anat. 185: 563–581.Google Scholar
  75. Manor, Y., Koch, C., and Segev, I., 1991, Effect of geometrical irregularities on propagation delay in axonal trees, Biophys. J. 60, 1424–1437.PubMedCrossRefGoogle Scholar
  76. Martin, K. A. C., and Whitteridge, D., 1984, Form, function, and intracortical projections of spiny neurons in the striate visual cortex of the cat, J. Physiol. 353: 463–504.PubMedGoogle Scholar
  77. Maunsell, J. H. R., and Gibson, J. R., 1992, Visual response latencies in striate cortex of the macaque monkey, J. Neurophysiol. 68: 1332–1344.PubMedGoogle Scholar
  78. Maunsell, J. H. R., and Van Essen, D. C., 1983, The connections of the middle temporal visual area MT) and their relationship to a cortical hierarchy in the macaque monkey, J Neurosci. 3: 2563–2586.Google Scholar
  79. McGuire, B. A., Hornung, J.-P., Gilbert, C. I., and Wiesel, T. N., 1984, Patterns of synaptic input to layer 4 of cat striate cortex, J Neurosci. 4: 3021–3033.Google Scholar
  80. McGuire, B. A., Gilbert, C. D., Rivlin, P. K., and Wiesel, T. N., 1991, Targets of horizontal connections in macaque primary visual cortex, J Comp. Neurol. 305: 370–392.CrossRefGoogle Scholar
  81. McIntosh, A. R., Grady, C. L., Ungerleider, L. G., Haxby, J. V., Rapoport, S. L., and Horwitz, B., 1994, Network analysis of cortical visual pathways mapped with PET, J Neurosci. 14: 655–666Google Scholar
  82. Miyashita, Y., 1995, How the brain creates imagery: Projection to primary visual cortex, Science 268: 1719–1720.Google Scholar
  83. Morrison, J. H., and Foote, S. L., 1986, Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in Old and New World monkeys, J. Comp. Neural. 243: 117–138.CrossRefGoogle Scholar
  84. Murphy, P. C., and Sillito, A. M., 1996, Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus, J Neurosci. 16: 1180–1192.PubMedGoogle Scholar
  85. Nakamura, H., Gattass, R., Desimone, R., and Ungerleider, I., 1993, The modular organization of projections from areas VI and V2 to areas V4 andIEO in macaques, J. Neurosci. 13: 368I - 3691.Google Scholar
  86. Nelson, J. I., Salin, P. A., Munk, M., Arzi, M., and Bullier, J., 1992, Spatial and temporal coherence in cortico-cortical connections: A cross-correlation study in areas 17 and 18 in the cat, Visual Neurosci. 9: 21–37.CrossRefGoogle Scholar
  87. Nelson, R. B., Friedman, D. P., ONeill, J. B., Mishkin, M., and Routtenberg, A., 1987, Gradients of protein kinase C substrate phosphorylation in primate visual system peak in visual memory storage areas, Brain Res. 416: 387–392.PubMedCrossRefGoogle Scholar
  88. Nowak, L. G., Munk, M. I 1. J., Girard, P., and Bullier, J., 1995, Visual latencies in areas VI and V2 of the macaque monkey, Visual Neurosci. 12: 371–384.CrossRefGoogle Scholar
  89. Ogren, M. P., and Hendrickson, A. E., 1977, The distribution of pulvinar terminals in areas 17 and 18 of the monkey, Brain Res. 137: 343–350.PubMedCrossRefGoogle Scholar
  90. Ojima, H., Honda, C. N., and Jones, E. G., 1991, Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex, Cerebral Cortex 1: 80–94.PubMedCrossRefGoogle Scholar
  91. Ojima, H., Honda, C. N., and Jones, E. G., 1992, Characteristics of intracellularly injected infragranular pyramidal neurons in cat primary auditory cortex, Cerebral Cortex 2: 197–216.PubMedCrossRefGoogle Scholar
  92. OKusky, J., and Colonnier, M., 1982, A laminar analysis of the number of neurons, glia and synapses in the visual cortex area 17) of adult macaque monkeys, J. Comp. Neural. 210: 291–306.CrossRefGoogle Scholar
  93. Pandya, D. N., and Sanides, F., 1973, Architectonic parcellat ion of the temporal opercuhun in rhesus monkey and its projection pattern, Z. Artat. Entzaickl.-Cesch. 13: 127–161.CrossRefGoogle Scholar
  94. Peters, A., 1987, Number of neurons and synapses in primary visual cortex, in: Cerebral Cortex, Volume 6, Further Aspects of Cortical Function, Including Hippocampus E. G., Jones and A. Peters, eds.), Plenum Press, New York, pp. 267–294.Google Scholar
  95. Pitchitpornchai, C., Rawson, J. A., and Rees, S., 1994, Morphology of parallel fibers in the cerebellar cortex of the rat: An experimental light and electron microscopic study with biocytin, J. Comp. Neural. 342: 206–220.CrossRefGoogle Scholar
  96. Ragsdale, C. W., and Graybiel, A. M., 1990, A simple ordering of neocortical areas established by the compartmental organization of their striatal project ions, Proc. Natl. Acad. Sci. USA 87: 6196–6199.PubMedCrossRefGoogle Scholar
  97. Raiguel, S. E., Lagae, L., Gulyas, B., and Orban, G. A., 1989, Response latencies in macaque areas VI, V2, and V5, Brain Res. 493: 155–159.PubMedCrossRefGoogle Scholar
  98. Rockland, K. S., 1989, Bistratified distribution of terminal arbors of individual axons projecting from area VI to middle temporal area MT) in the macaque monkey, Visual Neurosci. 3: 155–170.CrossRefGoogle Scholar
  99. Rockland, K. S., 1992, Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey, Cerebral Cortex 2: 353–374.PubMedCrossRefGoogle Scholar
  100. Rockland, K. S., 1994, The organization of feedback connections from area V2 18) to area V 1 17), in Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 261–299.Google Scholar
  101. Rockland, K. S., 1995, Morphology of individual axons projecting from area V2 to MT in the macaque, J. Comp. Neurol. 355: 15–26.PubMedCrossRefGoogle Scholar
  102. Rockland, K. S., 1996, Two types of corticopulvinar terminations: round type 2) and elongate type), J. Comp. Neural., 368: 57–87.CrossRefGoogle Scholar
  103. Rockland, K. S., and Douglas, K. L., 1993, Excitatory contacts of feedback connections in layer 1 of area VI: An EM-biocytin study in the macaque, Neurosci. Abstr. 19: 424.Google Scholar
  104. Rockland, K. S., and Drash, G. W., 1996, Collateralized divergent feedback connections that target multiple cortical areas, J Comp. Neural., 373: 529–548.CrossRefGoogle Scholar
  105. Rockland, K. S., and Pandya, I. N., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.PubMedCrossRefGoogle Scholar
  106. Rockland, K. S., and Van Hoesen, G. W., 1994, Direct temporal-occipital feedback connections to striate cortex V1) in the macaque monkey, Cerebral Cortex 4: 300–313.PubMedCrossRefGoogle Scholar
  107. Rockland, K. S., and Virga, A., 1989, Terminal arbors of individual “feedback” axons projecting from area V2 to V 1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris Ieucoagglutinin, J. Comp. Neurol. 285: 54–72.PubMedCrossRefGoogle Scholar
  108. Rockland, K. S., and Virga, A., 1990, Organization of individual cortical axons projecting from area V1 area 17) to V2 area 18) in the macaque monkey, Visual Neurosci. 4: 11–28.CrossRefGoogle Scholar
  109. Rockland, K. S., Saleem, K. S., and Tanaka, K., 1994, Divergent feedback connections from areas V4 and TEO in the macaque, Visual Neurosci. 11: 579–600.CrossRefGoogle Scholar
  110. Saleem, K. S., and Tanaka, K., 1996, Divergent projections for the anterior inferotemporal area TE to the perirhinal and entorhinal cortices in the macaque monkey, J Neurosci. 4: 4757–4775.Google Scholar
  111. Sateen), K. S., Tanaka, K., and Rockland, K. S., 1993, Specific and columnar projections from area TEO to TE in the macaque inferotemporal cortex, Cerebral Cortex 3: 454–464.CrossRefGoogle Scholar
  112. Salin, P. A., and Bullier, J., 1995, Corticocortical connections in the visual system: Structure and function, Physiol. Rev. 75: 107–154.PubMedGoogle Scholar
  113. Selemon, L. D., and Goldman-Rakic, P. S., 1985, Longitudinal topography and interdigitatiou of corticostriatal projections in the rhesus monkey, J. Neurosci. 5: 776–794.PubMedGoogle Scholar
  114. Selemon, L. I., and Goldman-Rakic, P. S., 1988, Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior, J. Neurosci. 8: 4049–4068.PubMedGoogle Scholar
  115. Sherman, S. M., and Koch, C., 1986, The control of retinogeniculate transmission in the mammalian lateral geniculate necleus, Exp. Brain Res. 63: 1–20.PubMedCrossRefGoogle Scholar
  116. Shipp, S., and Zeki, S., 1989a, The organization of connections between areas V5 and VI in macaque monkey visual cortex, Eur. J. Neurosci. 1: 309–332.PubMedCrossRefGoogle Scholar
  117. Shipp, S., and Zeki, S., 1989b, The organization of connections between areas V5 and V2 in macaque monkey visual cortex, Eur. j. Neurosci. 1: 333–354.PubMedCrossRefGoogle Scholar
  118. Singer, W., 1994, Putative functions of the temporal correlations in neocort.ical processing, in: Large-Scale Neuronal Theories of the Brain C. Koch and J. L. Davis, eds.), MIT Press, Cambridge, MA, PP 201–237.Google Scholar
  119. Singer, W., 1995, Development and plasticity of cortical processing architectures, Science 270: 758–764.PubMedCrossRefGoogle Scholar
  120. Singer, W., and Gray, C. M., 1995, Visual feature integration and the temporal correlation hypothesis, Annu. Rev. Neurosci. 18: 555–586.PubMedCrossRefGoogle Scholar
  121. Spatz, W. B., 1977, topographically organized reciprocal connections between areas 17 and MT visual area of superior temporal sulcus) in marmoset Callithrix jacchus), Exp. Brain Res. 27: 91–108.Google Scholar
  122. Tigges, J., and Tigges, M., 1984, Subcortical sources of direct projections to visual cortex, in: Cerebral Cortex, Volume 3, Visual Cortex A. Peters, and E. G. Jones, eds.), Plenum Press, New York, pp. 351–378.Google Scholar
  123. Tigges, J., Spatz, W. B., andFigges, M., 1974, Efferent corticocortical fiber connections of area 18 in the squirrel monkey Saimiri), J. Comp. Neu.rol. 158: 219–236.CrossRefGoogle Scholar
  124. Tigges, J., Tigges, M., and Perachio, A. A., 1977, Complementary laminar terminations of afferents to area 17 originating in area 18 and in the lateral geniculate nucleus in squirrel monkey, J. Comp. Neural. 176: 87–100.CrossRefGoogle Scholar
  125. Tigges, J., Tigges, M., Anschel, S., Cross, N. A., I.etbetter, W. D., and McBride, R. I., 1981, Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey Saimiri), J. Comp. Neurot. 202: 539–560.Google Scholar
  126. Tombal, T., 1984, 1.ayer VI cells, in: Cerebral Cortex, Volume 4, Association and Auditory Cortices A. Peters and E. G. Jones, eds.), Plenum Press, New York, pp. 479–519.Google Scholar
  127. Tononi, G., Sporns, O., and Edelman, G. M., 1992, Reentry and the problem of integrating multiple cortical areas: Simulation of dynamic integration in the visual system, Cerebral Cortex 2: 310–335.PubMedCrossRefGoogle Scholar
  128. Turner, B. II., Mishkin, M., and Knapp, M., 1980, Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey, J. Comp. Neural. 191: 515–543.CrossRefGoogle Scholar
  129. Ullman, S., 1995, Sequence seeking and counter streams: A computational model for bidirectional information flow in the visual cortex, Cerebral Cortex 5: 1–11.PubMedCrossRefGoogle Scholar
  130. Ungerleider, L. G., and Desimone, R., 1986, Cortical connections of visual area MT in the macaque, J. Comp. Neural. 248: 190–222.CrossRefGoogle Scholar
  131. Ungerleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in: Analysis of Visual Behavior I. J., Ingle, M. A., Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 549586.Google Scholar
  132. Vaadia, E., Haalmau, I., Aheles, M., Bergman, H., Prut, Y., Slovin, H., and Aertsen, A., 1995, Dynamics of neuronal interactions in monkey cortex in relation to behavioral events, Nature 373: 515–518.PubMedCrossRefGoogle Scholar
  133. Valverde, F., 1978, The organization of area 18 in the monkey: A Golgi study, Anat. Emhryol. Berl.) 154: 305–334.Google Scholar
  134. Van Essen, D. C., and DeYoe, E. A., 1995, Concurrent processing in the primate visual cortex, in: The Cognitive Neurosciences M. S. Gazzaniga, ed.), MIT Press, Cambridge, MA, pp. 383–4111.Google Scholar
  135. Van Essen, I. C., and Eckman, D. J., 1996, On hierarchies, Science 271: 777.CrossRefGoogle Scholar
  136. Van Essen, D. C., Newsome, W. “C., and Bixby, J. L., I982,Ehe pattern of interhemispheric connections and its relationship to extrastriale visual areas in the macaque monkey, J. Neurosci. 2: 265–283.Google Scholar
  137. Veenman, C. L., Reiner, A., and Honig, M. G., 1992, Biotiuylated dextran amine as an anterograde tracer for single-and double-labeling studies, J. Neurosci. Meth. 41: 239–254.CrossRefGoogle Scholar
  138. Vogt Weisenhorn, D. M., Wing, R. B., and Spatz, W. B., 1995, Morphology and connections of neurons in:urea 17 projecting to the extrastriate areas MT and 19 DM and to the superior colliculus in the monkey, Callithrix jacchus, J. Comp. Neurol. 362:233–255.Google Scholar
  139. Von Bonin, G., and Bailey, I., 1947, The Neocorlex of Macaca mulatla, University of Illinois Press, Urbana, IL.Google Scholar
  140. Webster, M. R., Bachevalier, J., and Ungerleider, L. G., 1994, Connections of inferior temporal areas 1EO and TE with parietal and frontal cortex in macaque monkeys, Cerebral Cortex 4: 470–483.PubMedCrossRefGoogle Scholar
  141. Weller, R. E., and Kaas, J. H., 1983, Retinotopoic patterns of connections of area 17 with visual areas V-II and MT in macaque monkeys, J. Cornp. Neural. 220: 253–279.CrossRefGoogle Scholar
  142. White, E. L., 1989, Cortical Circuits, Birkhauser, Boston.CrossRefGoogle Scholar
  143. Wiser, A. K., and Callaway, E. M., 1996, Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex, J. Neurosci. 16: 2724–2739.Google Scholar
  144. Wong-Riley, M. T. T., 1978, Reciprocal connections between striate and prestriate cortex in squirrel monkey as demonstrated by combined peroxidase histochemisty and autoradiography, Brain Res. 147: 159–164.PubMedCrossRefGoogle Scholar
  145. Yeterian, E. H., and Van I loesen, G. W., 1978, Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections, Brain Res. 139: 43–63.PubMedCrossRefGoogle Scholar
  146. Yoshioka, I., Levitt, J. B., and Lund, J. S., 1992, Intrinsic lattice connections of macaque monkey visual cortical arca V4, J. Neurosci. 12: 2785–2802.PubMedGoogle Scholar
  147. Young, M. P., 1993, The organization of neural systems in the primate cerebral cortex, froc. R. Soc. Pond. B 256: 1327–1331.Google Scholar
  148. Zeki, S., 1990, Parallelism and functional specialization in human visual cortex, Cold Spring Harbor Symp. Quant. Biol. 55: 651–661.PubMedCrossRefGoogle Scholar
  149. Zeki, S., and Shipp, S., 1988, The functional logic of corticocortical connections, Nature 335: 311–317.PubMedCrossRefGoogle Scholar
  150. Zeki, S., and Shipp, S., 1989, Modular connections between areas V2 and V4 of macaque monkey visual cortex, Eue. J. Neurosci. 1: 494–506.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Kathleen S. Rockland
    • 1
  1. 1.Department of Neurology, 2007 RCP, College of MedicineUniversity of IowaIowa CityUSA

Personalised recommendations