The Timing of Information Transfer in the Visual System

  • Lionel G. Nowak
  • Jean Bullier
Part of the Cerebral Cortex book series (CECO, volume 12)


The mammalian visual cortex is composed of a constellation of cortical areas that are interconnected by a dense network of corticocortical connections. Among those connections, it is usual to distinguish between feedforward and feedback connections. Feedforward connections carry information away from area V1 toward the parietal and the temporal lobes, whereas feedback connections carry impulses in the reverse direction (Salin and Bullier, 1995). It is becoming increasingly apparent that, despite its complexity, the visual system processes information very rapidly. The delay imposed by neuronal processing in the correction of visually guided movements is of the order of 100 msec (Rossetti, 1997). Recent results also suggest that visual recognition of complex scenes is possible within 100–200 msec (Thorpe el al., 1996).


Visual Cortex Conduction Velocity Lateral Geniculate Nucleus Conduction Time Macaque Monkey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, M., 1982, Local Cortical Circuits, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  2. Abeles, M., 1991, Corliconics: Neural Circuits of the Cerebral Cortex, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  3. Barash, S., Bracewell, R. M., Fugassi, L., Gnadt, J. W., and Andersen, R. A., 1991, Saccade-related activity in the lateral intraparietal area. 1. Temporal properties; comparison with area 7a, J. Neurophysiol. 66: 1095–1108.PubMedGoogle Scholar
  4. Bartlett, J. R., and Doty, R. W., 1974, Response of units in striate cortex of squirrel monkeys to visual and electrical stimuli, J. Neurophysiol. 37: 621–641.PubMedGoogle Scholar
  5. Baylis, G. C., Rolls, E. T., and Leonard, C. M., 1987, Functional subdivisions of the temporal lobe neocortex, J. Neurosci. 7: 330–342.PubMedGoogle Scholar
  6. Best, J., Reuss, S., and Dinse, H. R. O., 1986, Lamina-specific differences of visual latencies following photic stimulation in the cat striate cortex, Brain Res. 385: 356–360.PubMedCrossRefGoogle Scholar
  7. Bichot, N. P., Schall, J. D., and Thompson, K. G., 1996, Visual feature selectivity in frontal eye fields induced by experience in mature macaques, Nature 381: 697–699.PubMedCrossRefGoogle Scholar
  8. Blakemore, C., and Vital-Durand, F., 1986, Organization and postnatal development of the monkey’s lateral geniculate nucleus, J. Physiol. 380: 453–491.Google Scholar
  9. Bolz, J., Rosner, G., and Wässle, H., 1982, Response latency of brisk-sustained (X) and brisk-transient (Y) cells in the cat retina, ]. Physiol. 328: 171–190.Google Scholar
  10. Bullier, J., and Henry, G. H., 1979, Ordinal position of neurons in cat striate cortex, j. Neurophysiol. 42: 1251–1263.PubMedGoogle Scholar
  11. Bullier, J., and Henry G. H., 1980, Ordinal position and afferent input of neurons in monkey striate cortex, J. Comp. Neurol. 193: 913–935.PubMedCrossRefGoogle Scholar
  12. Bullier, J., and Nowak, L. G., 1995, Parallel versus serial processing: New vistas on the distributed organization of the visual system, Curr. Opin. Neurobiol. 5: 497–503.PubMedCrossRefGoogle Scholar
  13. Bullier, J., McCourt, M. E., and Henry, G. H., 1988, Physiological studies on the feedback connection to the striate cortex from cortical areas 18 and 19 of the cat, Exp. Brain Res. 70: 90–98.PubMedGoogle Scholar
  14. Bushnell, M. C., Goldberg, M. E., and Robinson, D. L., 1991, Behavioral enhancement of visual responses in monkey cerebral cortex: I. Modulation in posterior parietal cortex related to selective visual attention, J. Neurophysiol. 46: 755–772.Google Scholar
  15. Casagrande, V. A., 1994, A third visual pathway to primate area VI, Trends Neurosci. 17: 305–310.PubMedCrossRefGoogle Scholar
  16. Casanova, C., 1993, Response properties of neurons in area 17 projecting to the striate-recipient zone of the caTs lateralis posterior-pulvinar complex: Comparison with cortico-tectal cells, Exp. Brain Res. 96: 247–259.PubMedCrossRefGoogle Scholar
  17. Celebrini, S., Thorpe, S., Trotter, Y., and Imbert, M., 1993, Dynamics of orientation coding in area V1 of the awake primate, Visual Neurosci. 10: 811–825.CrossRefGoogle Scholar
  18. Cleland, B. G., and Enroth-Cugell, C., 1970, Quantitative aspects of gain and latency in the cat retina, J. Physiol. 206: 73–91.PubMedGoogle Scholar
  19. Cleland, B. G., Dubin, M. W., and Levick, W. R., 1971, Simultaneous recording of input and output of lateral geniculate neurons, Nature (New Biol.) 231: 191–192.Google Scholar
  20. Cleland, B. G., Levick, W. R., Morstyn, H., and Wagner, H. G., 1976, Lateral geniculate relay of slowly conducting retinal afferents to cat visual cortex, J. Physiol. 255: 299–320.Google Scholar
  21. Colby, C. L., Gattass, R., Olson, C. R., and Gross, C. G., 1988, Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study, J. Comp. Neural. 269: 392–413.CrossRefGoogle Scholar
  22. Cope, T. C., Fetz, E. E., and Matsumara, M., 1987, Cross-correlation assessment of synaptic strength of single la fibre connections with triceps surae motoneurones in cats,.J. Physiol. 390: 161–188.Google Scholar
  23. Creutzfeldt, O., and Ito, M., 1968, Functional synaptic organization of primary visual cortex neurons in the cat, Exp. Brain Res. 6: 324–352.PubMedCrossRefGoogle Scholar
  24. Desitnone, R., Fleming, J., and Gross, C. G., 1980, Prestriate afferents to inferior temporal cortex: An HRP study, Brain Res. 184: 41–55.CrossRefGoogle Scholar
  25. Dinse, H. R., and Krüger, K., 1994, The timing of processing along the visual pathway in the cat, NeuroReport 5: 893–897.PubMedCrossRefGoogle Scholar
  26. Douglas, R. J., and Martin, K. A., 1991, A functional microcircuit for cat visual cortex, J. Physiol. (Lund.) 440: 735–769.Google Scholar
  27. Dreher, B., Fukada, Y., and Rodieck, R. W., 1976, Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates, J. Physiol. 258: 433–452.PubMedGoogle Scholar
  28. Eder, C., Ficker, E., Günde, L. J., and Heinemann, U., 1991, Outward currents in rat entorhinal cortex stellate cells studied with conventional and perforated patch recordings, Eur. J. Neurosci. 3: 1271–1280.PubMedCrossRefGoogle Scholar
  29. Eggermont, J. J., 1992, Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation, and age,.J. Neurophysiol. 68: 1216–1228.Google Scholar
  30. Eschwiller, G. W., and Rauschecker, P., 1993, Temporal integration in visual cortex of cats withGoogle Scholar
  31. surgically induced strabismus, Eur. J. Neurosci. 5:1501–1509.Google Scholar
  32. Felleman, D. and Van Essen, D. C., 1991, Distributed hierarchical processing in the primateGoogle Scholar
  33. cerebral cortex, Cerebral Cortex 1:1–47.Google Scholar
  34. Ferster, D., and Jagadeesh, B., 1992, EPSP—IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording, J. Neurosci. 12: 1262–1274.PubMedGoogle Scholar
  35. Fetz, E. E., and Gustafsson, B., 1983, Relation between shapes of post-synaptic potentials and correlated changes in firing probability of cat motoneurones, J. Physiol. 341: 387–410.PubMedGoogle Scholar
  36. Finlay, B. L., Schiller, P. H., and Voman, S. F., 1976, Quantitative studies of single-cell properties in monkey striate cortex. IV. Corticotectal cells, J. Neurophysiol. 39: 1352–1361.Google Scholar
  37. Fregnac, Y., and Bringuier, V., 1996, Spatio-temporal dynamics of synaptic integration in cat visual cortical receptive fields, in: Biological Basis and Computational Theory ofVision ( A. Aertsen and V. Braitenberg, eds.), Elsevier, Amsterdam, pp. 1–57.Google Scholar
  38. Freund, T. F., Martin, K. A., Somogyi, P., and Whitteridge, D., 1985, Innervation of cat visual areas 17 and 18 by physiologically identified X- and Y-type thalamic afferents. II. Identification of postsynaptic targets by (;ABA immunocytochemistry and Golgi impregnation, J. Comp. Neurol. 242: 275–291.PubMedCrossRefGoogle Scholar
  39. Freund, T. F., Martin, K. A. C., Soltesz, I., Somogyi, P., and Whitteridge, D., 1989, Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey, J. Comp. Neurol. 289: 315–336.PubMedCrossRefGoogle Scholar
  40. Fries, W., 1984, Cortical projections to the superior colliculus in the macaque monkey: A retrograde study using horseradish peroxidase, J. Comp. Neurol. 230: 55–76.PubMedCrossRefGoogle Scholar
  41. Funahashi, S., Bruce, C. J., and Godman-Rakic, P. S., 1990, Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms, J. Neurophysiol. 63: 814–831.PubMedGoogle Scholar
  42. Gilbert, C. D., and Kelly, J. P., 1976, The projections of cells in different layers of the caTs visual cortex, J. Comp. Neurol. 163: 81–106.CrossRefGoogle Scholar
  43. Gilbert, C. D., and Wiesel, T. N., 1981, Morphology and intracortical projections of functionally characterised neurons in the cat visual cortex, Nature 280: 120–125.CrossRefGoogle Scholar
  44. Girard, P., and Bullier, J., 1989, Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey, J. Neurophysiol. 62: 1287–1302.PubMedGoogle Scholar
  45. Gochin, P. M., Miller, E. M., Gross, C. G., and Gerstein, G. L., 1991, Functional interactions among neurons inferior temporal cortex of the awake macaque, Exp. Brain Res. 84: 505–516.PubMedCrossRefGoogle Scholar
  46. Goldberg, M. E., and Bushnell, M. C., 1991, Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields related to saccades, J Neurophysiol. 46: 773–787.Google Scholar
  47. Gouras, P., 1969, Antidromic responses of orthodromically identified ganglion cells in monkey retina, J. Physiol. 204: 407–419.PubMedGoogle Scholar
  48. Gouras, P., and Link, K., 1966, Rod and cone interaction in dark-adapted monkey ganglion cells, J. Physiol. 184: 499–510.PubMedGoogle Scholar
  49. Grieve, K. L., and Sillito, A. M., 1995, Differential properties of cells in the feline primary visual cortex providing corticofugal feedback to the lateral geniculate nucleus and visual claustrum, J. Neurosci. 15: 4868–4874.PubMedGoogle Scholar
  50. Grinvald, A., Lieke, E. E., Frostig, R. D., and Hidelsheim, R., 1994, Cortical point-spread function and long-range interactions revealed by real-time optical imagining of macaque primary visual cortex, J. Neurosci. 14: 2545–2568.Google Scholar
  51. Gustafsson, B., and McCrea, D., 1983, Influence of stretch-evoked synaptic potentials on firing probability of cat spinal motoneurones, J. Physiol. 347: 431–451.Google Scholar
  52. Hartveit, E., and Heggelund, P., 1992, The effect of contrast on the visual response of lagged and nonlagged cells in the cat lateral geniculate nucleus, Visual Neurosci. 9: 515–525.CrossRefGoogle Scholar
  53. Harvey, A. R., 1980, A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat, J. Physiol. 302: 507–524.PubMedGoogle Scholar
  54. Haug, H., 1968, Quantitative elektronenmikroskopische Untersuchungen über den markfaseraufbau in der sehrinde der katze, Brain Res. 11: 65–84.PubMedCrossRefGoogle Scholar
  55. Heller, J., Hertz, J. A., Kjaer, T. W., and Richmond, B. 1., 1995, Information flow and temporal coding in primate pattern vision. J. Comput. Neurosci. 2: 175–193.Google Scholar
  56. Hendry, S. H. C., and Yoshioka, T. Y., 1994, A neurochemically distinct third channel in the macaque dorsal lateal geniculate nucleus, Science 264: 575–577.PubMedCrossRefGoogle Scholar
  57. Henry, G. H., Salin, P. A., and Bullier, J., 1991, Projections from area 18 and 19 to cat striate cortex: Divergence and laminar specificity, Eur. J. Neurosci. 3: 186–200.PubMedCrossRefGoogle Scholar
  58. Hoffmann, K. P., 1973, Conduction velocity pathways from retina to superior colliculus in the cat: A correlation with receptive field properties, J. Neurophysiol. 36: 409–424.PubMedGoogle Scholar
  59. Hofman, M. A., 1985, Size and shape of the cerebral cortex in mammals. I. The cortical surface, Brain Behay. Evol. 27: 28–40.CrossRefGoogle Scholar
  60. Houzel, J.-C., Milleret, C., and Innocenti, G., 1994, Morphology of callosal axons interconnecting areas 17 and 18 of the cat, Eur. J. Neurosci. 6:898–9I7.Google Scholar
  61. Hughes, A., and Wässle, H., 1976, The cat optic nerve: Fibre total count and diameter spectrum, J. Comp. Neurol. 169: 171–184.PubMedCrossRefGoogle Scholar
  62. Humphrey, A. L., and Saul, A. B., 1992, Action of brain stem reticular afferents on lagged and nonlagged cells in the cat lateral geniculate nucleus, J. Neurophysiol. 68: 673–691.PubMedGoogle Scholar
  63. Hursh, J. B., 1939, Conduction velocity and diameter of nerve fibers, Aria.]. Physiol. 127: 131–139.Google Scholar
  64. Ikeda, H., and Wright, M. J., 1975, Retinotopic distribution, visual latency and orientation tuning of sustained and transient cortical neurons in area 17 of the caTs visual cortex, Exp. Brain Res. 22: 385–398.Google Scholar
  65. Innocenti, G. M., 1980, The primary visual pathway through the corpus callosum: Morphological and functional aspects in the cat, Arch. Ital. Biol. 118: 124–188.PubMedGoogle Scholar
  66. Irvin, G. E., Norton, T., Sesma, M. A., and Casagrande, V. A., 1986, W-like response properties of interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago cra.ssicaudatus), Brain Res. 362: 254–274.PubMedCrossRefGoogle Scholar
  67. Kang, Y., Endo, K., and Araki, T., 1988, Excitatory synaptic actions between pairs of neighboring pyramidal tract cells in the motor cortex, I. Neurophysiol. 59: 636–647.Google Scholar
  68. Kawano, K., Shidara, M., Watanabe, Y., and Yamane, S., 1994, Neural activity in cortical area MST of alert monkey during occular following responses, J. Neurophysiol. 71: 2305–2324.PubMedGoogle Scholar
  69. Kirk, D. L., Cleland, B. G., and Levick, W. R., 1975, Axonal conduction latencies of cat retinal ganglion cells, J. Neurophysiol. 38: 1395–1402.PubMedGoogle Scholar
  70. Kirkwood, P. A., and Sears, T. A., 1978, The synaptic connections to intercostal motoneuroues as revealed by the average common excitation potential, J. Physiol. 275: 287–314.Google Scholar
  71. Knierim, J. J., and Van Essen, D. C. V., 1992, Neuronal responses to static texture patterns in area V 1 of the alert macaque monkey, J. Neurophysiol. 67: 961–980.Google Scholar
  72. Knox, C. K., 1974, Cross-correlation function for a neuronal model, Biophys. J. 14: 567–582.PubMedCrossRefGoogle Scholar
  73. Koike, H., Mano, N., Okada, Y., and Oshima, T., 1970, Repetitive impulses generated in fast and slow pyramidal tract cells by intracellularly applied current steps, Exp. Brain Res. 11: 263–281.PubMedCrossRefGoogle Scholar
  74. Komatsu, Y., Nakajima, S., Toyama, K., and Fetz, E. E., 1988, Intracortical connectivity revealed by spike-triggered averaging in slice preparations of cat visual cortex, Brain Res. 442: 359–362.PubMedCrossRefGoogle Scholar
  75. Konig, P., Engel, A. K., and Singer, W., 1996, Integrator or coincidence detector—The role of the cortical neuron revisited, Trends Neurosci. 19: 130–137.PubMedCrossRefGoogle Scholar
  76. Kovacs, G., Vogels, R., and Orban, G. A., 1995, Cortical correlate of backward masking, Proc. Natl. Acad. Sci. USA 92: 5587–5591.PubMedCrossRefGoogle Scholar
  77. Lachica, E. A., Beck, P. D., and Casagrande, V. A., 1992, Parallel pathways in macaque monkey striate cortex: Anatomically defined columns in layer III, Proc. Natl. Acad. Sci. USA 89: 3566–3570.PubMedCrossRefGoogle Scholar
  78. Lagae, L., Macs, H., Raiguel, S., Xiao, D.-K., and Orban, G. A., 1994, Responses of macaque STS neurons to optic flow components: A comparison of areas MT and MST, J. Neurophysiol. 71: 1597–1626.PubMedGoogle Scholar
  79. LaMantia, A.-S., and Rakic, P., 1990, Cytological and quantitative characteristics of form cerebral commissures in the rhesus monkey, J. Comp. Neural. 291: 520–537.CrossRefGoogle Scholar
  80. Lamme, V. A. F., 1995, The neurophysiology of figure ground segregation in primary visual cortex, J. Neurosci. 15: 1605–1615.PubMedGoogle Scholar
  81. Lee, B. B., Cleland, B. G., and Creutzfeldt, O. D., 1977, The retinal input to cells in area 17 of the caTs cortex, Exp. Brain Res. 30: 527–538.PubMedCrossRefGoogle Scholar
  82. Levick, W. R., 1973, Variation in the response latency of cat retinal ganglion cells, Vision Res. 13: 837–853.PubMedCrossRefGoogle Scholar
  83. Levitt, J. B., Lund, J. S., and Yoshioka, T., 1996, Anatomical substrates for early stages in cortical processing of visual information in the macaque monkey, Behay. Brain Res. 76: 5–19.CrossRefGoogle Scholar
  84. Livingstone, M. S., and Hubei, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  85. Livingstone, M. S., and Hubel, D. H., 1987, Connections between layer 46 of area 17 and the thick cytochrome oxydase stripes of area 18 in the squirrel monkey, J Neurosci. 7: 3371–3377.Google Scholar
  86. Lohmann, H., and Rrig, B., 1994, Long-range horizontal connections between supragranular pyramidal cells in the extrastriate visual cortex of the rat, J. Comp. Neurol. 344: 543–558.PubMedCrossRefGoogle Scholar
  87. Ltiwel, S., and Singer, W., 1992, Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity, Science 255: 209–212.CrossRefGoogle Scholar
  88. Malpeli, J. G., Schiller, P. H., and Colby, C. L., 1981, Response properties of single cells in monkey striate cortex during reversible inactivation of individual geniculate laminae, J. Neurophysiol. 46: 1102–1119.PubMedGoogle Scholar
  89. Marrocco, R. T., 1976, Sustained and transient cells in monkey lateral geniculate nucleus: Conduction velocities and response properties, J Neurophysiol. 39: 340–353.Google Scholar
  90. Martin, K. A. C., and Whitteridge, D., 1984, Form function and intracortical projections of spiny neurons in the striate visual cortex of the cat, J. Physiol. 356: 463–504.Google Scholar
  91. Mason, A., Nicoll, A., and Stratford, M., 1991, Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro, J. Neurosci. 11: 72–84.PubMedGoogle Scholar
  92. Mastronarde, D. N., 1987, Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties, J. Neurophysiol. 576: 381–413.Google Scholar
  93. Mastronarde, D. N., 1992, Nonlagged relay cells and interneurons in the cat lateral geniculate Nucleus—Receptive-field properties and retinal inputs, Visual Neurosci. 8: 407–441.CrossRefGoogle Scholar
  94. Matsumura, M., 1979, Intracellular synaptic potentials of primate motor cortex neurons during voluntary movement, Brain Res. 163: 33–48.PubMedCrossRefGoogle Scholar
  95. Maunsell, J. H. R., 1987, Physiological evidence for two visual subsystems, in: Matters of intelligence ( L. M. Vaina, ed.), Reidel, Dordrecht, Holland, pp. 59–87.CrossRefGoogle Scholar
  96. Maunsell, J. H. R., and Gibson, J. R., 1992, Visual response latencies in striate cortex of the macaque monkey, J. Neurophysiol. 4: 1332–1334.Google Scholar
  97. McClurkiu, J. W., and Optican, L. M., 1996, Primate striate and prestriate cortical neurons during discrimination. I. Simultaneous temporal encoding of information about color and pattern, J NeuropJasiol. 75: 481–495.Google Scholar
  98. McCormick, D. A., and Van Krosigk, M., 1992, Corticothalamic activation modulates thalamic firing through glutamate °metabotropic“ receptors, Proc. Natl. Acad. Sci. USA 89: 2774–2778.PubMedCrossRefGoogle Scholar
  99. McCourt, M. E., Thalluri, J., and Henry, G. H., 1990, Properties of area 17J18 border neurons contributing to the visual transcallosal pathway in the cat, Visual Neurosci. 5: 83–98.CrossRefGoogle Scholar
  100. Michalski, A., Gestin, G. L., Czarowska, J., and Tarneki, R., 1983, Interactions between cat striate cortex neurons, Exp. Brain Rec. 51: 97–107.Google Scholar
  101. Mitchison, G., 1992, Axonal trees and cortical architecture, Trends Neurosci. 15: 122–126.PubMedCrossRefGoogle Scholar
  102. Mitzdorf, U., and Singer, W., 1979, Excitatory synaptic ensemble properties in the visual cortex of the macaque monkey: A current source density analysis of electrically evoked potentials, J. Comp. Neural. 187: 71–84.CrossRefGoogle Scholar
  103. Movshon, J. A., and Newsome, W. T., 1996, Visual response properties of striate cortical neurons projecting to area M’I’ in macaque monkeys, J. Neurosci. 16: 7733–7741.Google Scholar
  104. Mukerjee, P., and Kaplan, E., 1995, Dynamics of neurons in the cat lateral geniculate nucleus: In vivo electrophysiology and computational modeling, J Neurophysiol. 74: 1222–1243.Google Scholar
  105. Munk, M. H. J., Nowak, L. G., Girard, P., Chounlamountri, N., and Bullier, J., 1995, Visual latencies in cytochrome oxydase bands of macaque area V2, Proc. Nail. Acad. Sci. USA 92: 988–992.CrossRefGoogle Scholar
  106. Murre, J. M. J., and Sturdy, D. P. F., 1995, The connectivity of the brain: Multi-level quantitative analysis, Biol. Cybernet. 73: 529–545.CrossRefGoogle Scholar
  107. Naito, H., Miyakawa, F., and Ito, N., 1971, Diameters of callosal fibers interconnecting cat sensorimotor cortex, Brain Res. 27: 369–372.PubMedCrossRefGoogle Scholar
  108. Nakamura, H., Gattass, R., Desimone, R., and Ungerleider, L. G., 1993, The modular organization of projections from areas V I and V2 to areas V4 and TEO in macaques, J. Neursci. 13: 3681–3691.Google Scholar
  109. Nealey, I. A., and Maunsell, J. H. R., 1994, Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex, J. Neurosci. 14: 2069–2079.PubMedGoogle Scholar
  110. Nelson, J. I., Salin, P. A., Munk, M. H. J., Arzi, M., and Bullier, J., 1992, Spatial and temporal coherence in corticocortical connections: A cross-correlation study in areas 17 and 18 in the cat, Visual Neurosci. 9: 21–38.CrossRefGoogle Scholar
  111. Nelson, M. E., and Bower, J. M., 1990, Brain maps and parallel computers, Trends Neurosci. 13: 403–408.PubMedCrossRefGoogle Scholar
  112. Nicoll, A., and Blakemore, C., 1993, Single-fibre EPSPs in layer 5 of rat visual cortex in vitro, NeuroReport 4: 167–170.PubMedCrossRefGoogle Scholar
  113. Nowak, L. G., and Bullier, J., 1997a, Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter: I. Evidence from chronaxie measurements, Exp. Brain Res., in press.Google Scholar
  114. Nowak, L. G., and Bullier, J., 1997b, Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter: II. Evidence from selective inactivation of cell bodies and axon initial segments, Exp. Brain Res., in press.Google Scholar
  115. Nowak, 1.. G., Munk, M. H. J., Chounlamountri, N., and Bullier, J., 1994, Temporal aspects of information processing in areas V1 and V2 of the macaque monkey, in: Oscillatory Event Related Brain Dynamics ( C. Pantev, T. Elbert, and B. Lutkenhiiner, eds.), Plenum Press, New York, pp. 85–98.Google Scholar
  116. Nowak, I.. G., Munk, M. H. J., Girard, P., and Bullier, J., 1995, Visual latencies in areas V I and V2 of the macaque monkey, Visual Neurosci. 12: 371–384.CrossRefGoogle Scholar
  117. Nowak, L. G., James, A. C., and Bullier, J., 1997, Corticocortical connections between visual areas 17 and 18a of the rat studied in vitro: Spatial and temporal organisation of functional synaptic responses, Exp. Brain Res. 117: 283–305.CrossRefGoogle Scholar
  118. Oram, M. W., and Perrett, D. I., 1992, Time course of neural responses discriminating different views of the face and head, J Neurophysiol. 68: 70–84.Google Scholar
  119. Orbach, H. S., and Van Essen, D. C., 1993, In vivo tracing of pathways and spatio-temporal activity patterns in rat visual cortex using voltage sensitive dyes, Exp. Brain Res. 94: 371–392.Google Scholar
  120. Orban, G. A., Hoffmann, K.-P., and Duyssens, J., 1985, Velocity selectivity in the cat visual system. 1. Responses of LGN cells to moving bar stimuli: A comparison with cortical areas 17 and 18, J. Neurophysiol. 54: 1026–1049.Google Scholar
  121. Palmer, L. A., and Rosenquist, A. C., 1974, Visual receptive fields of single striate cortical units projecting to the superior colliculus in the cat, Brain Res. 67: 27–42.PubMedCrossRefGoogle Scholar
  122. Payne, B. R., 1993, Evidence for visual cortical area homologs in cat and macaque monkey, Cerebral Cortex 3: 1–25.PubMedCrossRefGoogle Scholar
  123. Pei, X., Vidyasagar, T. R., Volgushev, M., and Creutzfeldt, O. D., 1994, Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex, J. Neurosci. 14: 7130–7140.PubMedGoogle Scholar
  124. Perkel, D. H., Gerstein, G. L., and Moore, G. P., 1967, Neuronal spike trains and stochastic point processes. IL Simultaneous spike trains, Biophys. f. 7: 419–440.Google Scholar
  125. Perrett, D. L., Rolls, E. T., and Caan, W., 1982, Visual neurons responsive to faces in the monkey temporal cortex, Exp. Brain Res. 47: 329–342.PubMedCrossRefGoogle Scholar
  126. Peters, A., and Sethares, C., 1996, Myelinated axons and the pyramidal cell modules in monkey primary visual cortex, ]. Comp. Neurol. 365: 232–255.CrossRefGoogle Scholar
  127. Peters, A., Payne, B. R., and Budd, J., 1994, A numerical analysis of the geniculocortical input to striate cortex in the monkey, Cerebral Cortex 4: 215–229.PubMedCrossRefGoogle Scholar
  128. Raiguel, S. E., Lagae, L., Gulyas, B., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas V1, V2 and V5, Brain Res. 493: 155–159.PubMedCrossRefGoogle Scholar
  129. Ranck, J. B., 1975, Which elements are excited in electrical stimulation of mammalian central nervous system: A review, Brain Res. 98: 417–440.PubMedCrossRefGoogle Scholar
  130. Reese, B. E., and Guillery, R. W., 1987, Distribution of axons according to diameter in the monkey’s optic tract, f. Comp. Neurol. 260: 453–460.CrossRefGoogle Scholar
  131. Reese, B. E., and Ho, K.-Y., 1988, Axon diameter distributions across the monkey’s optic nerve, Neuroscience 27: 205–214.PubMedCrossRefGoogle Scholar
  132. Reyes, A. D., and Fetz, E. E., 1993a, Two modes of interspike interval shortening by brief transient depolarizations in cat neocortical neurons, J. Neurophysiol. 69: 1661–1672.PubMedGoogle Scholar
  133. Reyes, A. D., and Fetz, E. E., 1993b, Effects of transient depolarizing potentials on the firing rate of cat neocortical neurons, J. Neurophysiol. 69: 1673–1683.PubMedGoogle Scholar
  134. Richmond, B. L., and Optican, L. M., 1990, Temporal encoding of two dimensional patterns by single units in primate primary visual cortex. II. Information transmission, J. Neurophysiol. 64: 307–380.Google Scholar
  135. Rockland, K. S., 1989, Bistratified distribution of terminal arbors of individual axons projecting from area VI to middle temporal area (MT) in the macaque monkey, Visual Neurosci. 3: 155–170.CrossRefGoogle Scholar
  136. Rockland, K. S., 1992, Configuration, in serial reconstruction, of individual axons projecting from area V2 to V4 in the macaque monkey, Cerebral Cortex 2: 353–374.PubMedCrossRefGoogle Scholar
  137. Rockland, K. S., 1995, Morphology of individual axons projecting from area V2 to Mt in the macaque, J. Comp. Neurol. 355: 15–26.PubMedCrossRefGoogle Scholar
  138. Rockland, K. S., and Virga, A., 1989, ‘Terminal arbors of individual “feedback” axons projecting from area V2 to V I in the macaque monkey: A study using immunohistochemistry of anterogradely transported l’haseolus vulgaris-leucoagglutinin, J. Comp. Neurol. 285:54–72.Google Scholar
  139. Rockland, K. S., and Virga, A., 1990, Organization of individual cortical axons projecting from area VI (area 17) to V2 (area 18) in the macaque monkey, Visual Neurosci. 4: 11–28.CrossRefGoogle Scholar
  140. Rockland, K. S., Saleem, K. S., and Tanaka, K., 1994, Divergent feedback connections from areas V4 and TEO, Visual Neurosci. 11: 579–600.CrossRefGoogle Scholar
  141. Rolls, E. T., and ‘lbvee, M. J., 1994, Processing speed in the cerebral-cortex and the neurophysiology of visual masking, Proc. R. Soc. Lond. B 257: 9–15.CrossRefGoogle Scholar
  142. Rossetti, Y., 1997, implicit perception in action: Short-lived motor representations of space, in: Advances in Consciousness Research (I’. G. Grosenbacher, ed.), Benjamins Publishers, Amsterdam.Google Scholar
  143. Rushton, W. A., 1951, A theory of the effects of fibre size in medullated nerve, J Physiol. 115: 101 - I22.Google Scholar
  144. Salin, P.-A., and Bullier, J., 1995, Corticocortical connections in the visual system: Structure and function, Physiol. Rev. 75: 107–154.PubMedGoogle Scholar
  145. Sato, H., Katsuyama, N., ‘Tannura, H., Hata, Y., and ’Fsutnoto, T., 1994, Broad-tuned chromatic inputs to color-selective neurons in the monkey visual cortex, J. Neurophysiol. 72: 163–168.Google Scholar
  146. Saul, A. B., and Humphrey, A. I… 1990, Spatial and temporal response properties of lagged and non-lagged cells in cat lateral geniculate nucleus, J. Neurophysiol. 64: 206–224.PubMedGoogle Scholar
  147. Schall, J. D., Morel, A., King, D. J., and Bullier, J., 1995, ‘Topography of visual-cortex connections with frontal eye field in macaque—Convergence and segregation of processing streams, J. Neurosci. 15: 4464–4487.Google Scholar
  148. Schiller, P. H., and Malpeli, J. G., I977a, The effect of striate cortex cooling on area 18 cells in the monkey, Brain Res. 126: 366–369.Google Scholar
  149. Schiller, P. H., and Malpeli, J. G., 1977b, Properties and rectal projections of monkey retinal ganglion cells, J. Neurophysiol. 40: 428–445.PubMedGoogle Scholar
  150. Schiller, P. H., and Malpeli, J. G., 1978, Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey, J. Neurophysiol. 41: 788–797.PubMedGoogle Scholar
  151. Segal, M., and Barker, J. L., 1984, Rat hippocampal neurons in culture: Potassium conductances, J. Neurophysiol. 51: 1409–1433.PubMedGoogle Scholar
  152. Sestokas, A. K., and Lehmkuhle, S., 1986, Visual latency of X- and Y-cells in the dorsal lateral geniculate nucleus of the cat, Vision Res. 26: 1041–1054.PubMedCrossRefGoogle Scholar
  153. Shadlen, M. N., and Newsome, W. ‘T., 1994, Noise, neural codes and cortical organization, Curr. Opin. Neurobiol. 4: 569–579.Google Scholar
  154. Shipp, S., and Grant, S., 1991, Organization of reciprocal connections between area 17 and the lateral suprasylvian area of cat visual cortex, Visual Neurosci. 6: 339–355.CrossRefGoogle Scholar
  155. Shipp, S., and Zeki, S. M., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.PubMedCrossRefGoogle Scholar
  156. Sillito, A. M., Kemp, J. A., Milson, J. A., and Berardi, N., 1980, A re-evaluation of the mechanisms underlying simple cell orientation selectivity, Brain Res. 194: 517–520.PubMedCrossRefGoogle Scholar
  157. Singer, W., ‘Fretter, F., and Cynader, M., 1975, Organization of cat striate cortex: A correlation of receptive-field properties with afferent and efferent connections, J. Neurophysiol. 38: 1080–1098.Google Scholar
  158. Softky, W. R., 1995, Simple codes versus efficient codes, Curr. Opin. Neurobiol. 5: 239–247.PubMedCrossRefGoogle Scholar
  159. Stafstrom, C. E., Schwindt, P. C., Chubb, M. C., and Crill, W. E., 1985, Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro, J. Neurophysiol. 53: 153–170.PubMedGoogle Scholar
  160. Stanford, I.. R., 1987, Conduction velocity variations minimize conduction time differences among retinal ganglion cell axons, Science 238: 358–360.PubMedCrossRefGoogle Scholar
  161. Stone, J., 1983, Parallel Processing in the Visual System. The Classification of Retinal Ganglion Cells and its Impact on the Neurobiology of Vision, Plenum Press, New York.CrossRefGoogle Scholar
  162. Sutor, B., and Hablitz, J. J., 1989, EPSPs in rat neocortical neurons in vitro. II. Involvement of N-methyl-n-aspartate receptors in the generation of EPSPs, J. Neurophysiol. 61: 621–634.Google Scholar
  163. Swadlow, H. A., 1974, Systematic variations in the conduction velocity of slowly conducting axons in the rabbit corpus callosum, Exp. Neurol. 43: 445–45I.PubMedCrossRefGoogle Scholar
  164. Swadlow, H. A., 1992, Monitoring the excitability of neocortical efferent neurons to direct activation by extracellular current pulses, ]. Neurophysiol. 68: 605–619.Google Scholar
  165. Swadlow, H. A., 1994, Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: Axonal properties, sensory receptive fields, and subthreshold synaptic inputs, J Neurophysiol. 71: 437–453.Google Scholar
  166. Swadlow, H. A., and Weyand, T. G., 1981, Efferent systems of the rabbit visual cortex; Laminar distribution of the cells of origin, axonal conduction velocities and identification of axonal branches, J. Comp. Neurol. 203: 799–822.PubMedCrossRefGoogle Scholar
  167. Swadlow, H. A., Rosene, D. L., and Waxman, S. G., 1978, Characteristics of interhemispheric impulse conduction between prelunate gyri of the rhesus monkey, Exp. Brain Res. 33: 455–467.PubMedCrossRefGoogle Scholar
  168. Tanaka, K., 1983, Cross-correlation analysis of geniculostriate neuronal relationships in cats, J. Neurophysiol. 49: 1303–1318.PubMedGoogle Scholar
  169. Tanaka, M., Weber, H., and Creutzfeldt, O. D., 1986, Visual properties and spatial distribution of neurons in the visual association area of the prelunate gyrus of the awake monkey, Exp. Brain Res. 65: 11–37.PubMedCrossRefGoogle Scholar
  170. Thalluri, J., and Henry, G. H., 1989, Neurons of the striate cortex driven trans-synaptically by electrical stimulation of the superior colliculus, Vision Res. 10: 1319–1323.CrossRefGoogle Scholar
  171. Thompson, K. G., Hanes, D. P., Bichot, N. P., and Schall, J. D., 1996, Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search, JNeurophysiol., in press.Google Scholar
  172. Thomson, A. M., and West, D. C., 1993, Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex, Neuroscience 54: 329–346.PubMedCrossRefGoogle Scholar
  173. Thomson, A. M., Girdlestone, D., and West, D. C., 1988, Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices, J. Neurophysiol. 60: 1896–1907.PubMedGoogle Scholar
  174. Thomson, A. M., Deuchars, J., and West, D. C., 1993, Single axon excitatory postynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation, Neuroscience 54: 347–360.PubMedCrossRefGoogle Scholar
  175. Thorpe, S. J., and Imbert, M., 1989, Biological constraints on connectionist models, in: Connectionism in Perspective (R. Pfeiffer, Z. Schreter, F. Fogelamn-Soulié, and 1.. Steels, eds.), Elsevier, Amsterdam, pp. 63–92.Google Scholar
  176. Thorpe, S. J., Rolls, E. T., and Maddison, S., 1983, The orbitofrontal cortex: Neuronal activity in the behaving monkey, Exp. Brain Res. 49: 93–115.PubMedCrossRefGoogle Scholar
  177. Thorpe, S., Fize, D., and Marlot, C., 1996, Speed of processing in the human visual system, Nature 381: 520–522.Google Scholar
  178. Tovee, M. J., Rolls, E. T., Treves, A., and Bellis, R. P., 1993, Information encoding and the responses of single neurons in the primate temporal visual cortex, J. Neurophysiol. 70: 640–654.PubMedGoogle Scholar
  179. Toyama, K., Matsunami, K., Ohno, T., and “lòkashiki, S., 1974, An intracellular study of neuronal organisation in the visual cortex, Exp. Brain Res. 21: 45–66.Google Scholar
  180. Toyama, K., Kimura, M., and Tanaka, K., 1981, Cross-correlation analysis of interneuronal connectivity in cat visual cortex, J. Neurophysiol. 2: 191–201.Google Scholar
  181. Tsumoto, T., Creutzfeldt, O. D., and Legendy, C. R., 1978, Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat, Exp. Brain Res. 32: 345–364.PubMedCrossRefGoogle Scholar
  182. Ullman, S., 1995, Sequence seeking and counter streams—A computational model for bidirectional information-flow in the visual-cortex, Cerebral Cortex 5: 1–1 1.Google Scholar
  183. Vogels, R., and Orban, G. A., 1990, How well do response changes of striate neurons signal differences in orientation: A study in the discriminating monkey, J. Neurosci. 10: 3543–3558.PubMedGoogle Scholar
  184. Vogels, R., and Orban, G. A., 1994, Activity of inferior temporal neurons during orientation discrimination with succesively presented gratings, f. Neurophysiol. 71: 1428–1451.Google Scholar
  185. Volgushev, M., Vidyasagar, T. R., and Pei, X., 1995, Dynamics of orientation tuning of postsynaptic potentials in the cat visual cortex, Visual Neurosci. 12: 621–628.CrossRefGoogle Scholar
  186. Wässle, H., Levick, W. R., Kirk, D. L., and Cleland, B. G., 1975, Axonal conduction velocity and perikaryal size, Exp. Neural. 49: 246–251.CrossRefGoogle Scholar
  187. Waxman, S. G., and Bennett, M. V. L., 1972, Relative conduction velocities of small myelinated and non-myelinated fibres in the central nervous system, Nature 238: 217–219.Google Scholar
  188. Waxman, S. G., and Swadlow, H. A., 1976, Ultrastructure of visual callosal axons in the rabbit, Exp. Neurol. 536: 115–127.CrossRefGoogle Scholar
  189. Weiss, G., 1991, Sur la possibilité de rendre comparables entre eux les appareils servant à l’excitation électrique, Arch. lial. Biol. 35: 431–446.Google Scholar
  190. Welker, E., Armstrong_James, M., Van der Loos, H., and Kraftsik, R., 1993, The mode of activation of a barrel column: Response properties of single units in somatosensory cortex of the mouse upon whisker deflection, Eur. J. Neurosci. 5: 691–712.Google Scholar
  191. Wiesel, I. N., and Hubel, I. H., 1966, Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey, J. Neurophysiol. 29: 1115–1156.PubMedGoogle Scholar
  192. Wilson, P. D., Rowe, M. H., and Stone, J., 1976, Properties of relay cells in the caTs lateral geniculate nucleus: A comparison of W-cells with X- and Y-cells, f. Neurophysiol. 39: 1193–1209.Google Scholar
  193. Yoshioka, I., and Dow, B. M., 1996, Color, orientation and cytochrome oxidase reactivity in areas V1, V2 and V4 of macaque monkey visual cortex, Below. Brain Res. 76: 71–88.CrossRefGoogle Scholar
  194. Yoshioka, I., Levitt, J. B., and Lund, J. S., 1994, Independence and merger of thalamocortical channels within macaque monkey primary visual cortex: Anatomy of interlaminar projections, Visual Neurosci. 11: 467–489.CrossRefGoogle Scholar
  195. Young, M. P., 1992, Objective analysis of the topological organization of the primate cortical visual system, Nature 358: 152–155.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Lionel G. Nowak
    • 1
  • Jean Bullier
    • 2
  1. 1.Section of NeurobiologyYale University School of MedicineNew HavenUSA
  2. 2.Cerveau et Vision INSERM 371Bron CedexFrance

Personalised recommendations