Visuotopic Organization of Primate Extrastriate Cortex

  • Marcello G. P. Rosa
Part of the Cerebral Cortex book series (CECO, volume 12)


One of the fundamental aspects of the organization of extrastriate visual cortex in mammals is the presence of multiple representations of the visual field. Although the existence of these visuotopic maps has been known for more than 50 years (Talbot, 1942), there are still many open issues regarding their organization. Descriptions of the number, boundaries, and visuotopic organization of cortical visual areas vary not only among primates, but also between studies of single species by different groups (e.g., Fig. 1; see Table I for abbreviations). It is not clear whether these differences reflect real individual or interspecies variability, or whether they merely reflect the need for more study or better criteria for the definition of visual areas. The aim of this chapter is to review the current evidence related to the precision, extent, and topological characteristics of visuotopic maps in extrastriate areas of primates. A critical evaluation of the published evidence on these subjects reveals that some of the present points of contention are the result not only of the complexity of the problem, but also of the scarcity of the data available for interpretation. Response properties, architecture, connections, and nodular patterns can also be used to lend or deny support to specific hypotheses generated on the basis of visuotopy, but these criteria will not be reviewed in detail here.


Receptive Field Visual Area World Monkey Superior Temporal Sulcus Horizontal Meridian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albright, T. D., and Desimone, R., 1987, Local precision of visuotopic organization in the middle temporal area (MT) of the macaque, Exp. Brain Res. 65: 582–592.PubMedGoogle Scholar
  2. Albus, K., and Beckmann, R., 1980, Second and third visual areas of the cat: Interindividual variability in retinotopic arrangement and cortical location, J. Physiol. (Land.) 299: 247–276.Google Scholar
  3. Albus, K., and Willie, P., 1994, lhe topography of tangenital inhibitory connections in the postnatally developing and mature striate cortex of the cat, Ear. J. Neurosci. 6: 779–792.Google Scholar
  4. Allman, J. M., and Kaas, J. H., 1971, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aolns trivirgalns), Brain Res. 31: 85–105.PubMedGoogle Scholar
  5. Allman, J. M., and Kaas, 1. H., I974a, The organization of the second visual area (V II) in the owl monkey: A second order transformation of the visual hemifield, Brain Res. 76: 247–265.Google Scholar
  6. Allman, J. M., and Kaas, J. H., 1974b, A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus), Brain Res. 81: 199–213.PubMedGoogle Scholar
  7. AlIman, J. M., and Kaas, J. H., 1975, The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus), Brain Res. 100: 473–487.Google Scholar
  8. Allman, J. M., and Kaas, J. H., 1976, Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey, Science 191: 572–575.PubMedGoogle Scholar
  9. Allman, J. M., and McGuinness, E., 1983, The organization of cortical visual areas in a strepsirhine primate, Galago.senegalensis, Soc. Neurosci. Abstr. 9: 957.Google Scholar
  10. Allman, J. M., Kaas, J. H., and Lane, R. H., 1973, The middle temporal area (MT) in the bushbaby, Galago senegalensis, Brain Res. 57: 197–202.Google Scholar
  11. Allman, J., Campbell, C. B. G., and McGuinness, E., 1979, Fhe dorsal third tier area in Galago senegalensis, Brain Res. 179:355–36I.Google Scholar
  12. Allman, J., Miezin, F., and McGuinness, E., 1985, Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local—global comparisons in visual neurons, Annu. Rev. Neurosci. 8: 407–430.PubMedGoogle Scholar
  13. Alloway, K. D., Rosenthal, P., and Burton, H., 1989, Quantitative measurements of receptive field changes during antagonism of GABAergic transmission in primary somatosensory cortex of cats, Exp. Brain Res. 78: 514–532.PubMedGoogle Scholar
  14. Andersen, R. A., Asanuma, C., Essick, G., and Siegel, R. M., 1990, Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule, J Comp. Neurol. 296: 65–113.PubMedGoogle Scholar
  15. Anderson, C. H., and Van Essen, D. C., 1987, Shifter circuits: A computational strategy for dynamic aspects of visual processing, Proc. Natl. Acad. Sci. USA 84: 6297–6301.PubMedGoogle Scholar
  16. Baizer, J. S., Robinson, D. L., and Dow, B. M., 1977, Visual responses of area 18 neurons in awake, behaving monkey, J. Neurophysiol. 40: 1024–1037.PubMedGoogle Scholar
  17. Baker, J. F., Petersen, S. E., Newsome, W. T., and Allman, J. M., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral and middle temporal areas, J. Neurophysiol. 45: 397–416.PubMedGoogle Scholar
  18. Ballard, D. H., 1987, Cortical connections and parallel processing: Structure and funct ion, in: Vision, Brain and Cooperative Computation (M. A. Arbil) and A. R. Hanson, eds.), MIT Press, Cambridge, MA, pp. 563–621.Google Scholar
  19. Barlow, H. B., 1979, Three theories of cortical function, in: Neurobiology of Vision ( R. D. Freeman, ed.), Academic Press, New York, pp. 1–16.Google Scholar
  20. Barlow, H. B., 1981, Critical limiting factors in the design of the eye and visual cortex, Prot R. Soc. Lond. B 212: 1–34.Google Scholar
  21. Barlow, H. B., 1986, Why have multiple cortical areas? Vision Res. 26: 81–90.PubMedGoogle Scholar
  22. Beckers, G., and Zeki, S., 1995, The consequences of inactivating areas VI and V5 on visual motion perception, Brain 118: 49–60.PubMedGoogle Scholar
  23. Bignall, K. E., and Singer, P., 1967, Auditory, somatic and visual input to association and motor cortex of the squirrel monkey, Exp. Neurol. 18: 300–312.PubMedGoogle Scholar
  24. Bisti, S., and Maffei, L., 1974, Behavioural contrast sensitivity of the cat in various visual meridians, J. Physiol. (Lond.) 241: 201–210.Google Scholar
  25. Blasdel, G. G., and Fitzpatrick, D., 1984, Physiological organization of layer 4 in macaque striate cortex, f. Neurosci. 4: 880–895.Google Scholar
  26. Blatt, G. J., Andersen, R. A., and Stoner, G. R., 1990, Visual receptive field organization and corticocortical connections of the lateral intraparietal area (area LIP) in the macaque, J Comp. Neural. 299: 421–445.Google Scholar
  27. Born, R. T., and Tootell, R. B. H., 1992, Segregation of global and local motion processing in primate middle temporal visual area, Nature 357: 497–499.PubMedGoogle Scholar
  28. Boussaoud, D., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque, J. Comp. Neural. 296: 462–495.Google Scholar
  29. Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1991, Visual topography of area TEO in the macaque, J. Comp. Neurol. 306: 554–575.PubMedGoogle Scholar
  30. Bruce, C. J., Desimone, R., and Gross, C. G., 1982, Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque, J. Neurophysiol. 46: 369–384.Google Scholar
  31. Bruce, C. J., Desimone, R., and Gross, C. G., 1986, Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey, f. Neurophysiol. 55: 1057–1075.Google Scholar
  32. Bullier, J., and Nowak, L. G., 1995, Parallel versus serial processing: New vistas on the distributed organization of the visual system, Curr. Opin. Neurobiol. 5: 497–503.PubMedGoogle Scholar
  33. Bullier, J., Girard, 1., and Salin, P.-A., 1994, The role of area 17 in the transfer of information to extrastriate visual cortex, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 301–331.Google Scholar
  34. Burkhalter, A., and Van Essen, I). C., 1986, Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey,J. Neurosci. 6: 2327–2351.Google Scholar
  35. Burkhalter, A., Felleman, D. J., Newsome, W. T., and Van Essen, D. C., 1986, Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex, Vision Res. 26: 63–80.PubMedGoogle Scholar
  36. Burton, H., Fabri, M., and Alloway, K., 1995, Cortical areas within the lateral sulcus connected to cutaneous representations in area 36 and area 1: A revised interpretation of the 2nd somatosensory area in macaque monkeys, J. Comp. Neurol. 355: 539–562.PubMedGoogle Scholar
  37. Calford, M. B., and Semple, M. N., 1995, Monaural inhibition in cat auditory cortex, J Neurophysiol. 73: 1876–1891.PubMedGoogle Scholar
  38. Calford, M. B., and Tweedale, R., 1988, Immediate and chronic changes in responses of somatosensory cortex in adult flying-fox after digit amputation, Nature 332: 446–448.PubMedGoogle Scholar
  39. Calford, M. B., Webster, W. R., and Semple, M. S., 1983, Measurement of frequency selectivity of single neurons in the central auditory pathway, Hearing Res. 11: 395–401.Google Scholar
  40. Clarey, J. C., Barone, P., and Imig, T. J., 1992, Physiology of thalamus and cortex, in: The Mammalian Auditory Pathway: Neurophysiology ( A. N. Popper and R. R. Fay, eds.), Springer-Verlag, Berlin, pp. 232–334.Google Scholar
  41. Colby, C. L., Gattass, R., Olson, C. R., and Gross, C. G., 1988, Topographic organization of cortical afferents to extrastriate area PO in the macaque: A dual tracer study, J Comp. Neurol. 238: 1257–1299.Google Scholar
  42. Colby, C. L., Duhamel, J.-R., and Goldberg, M. E., 1993a, Ventral intraparietal area in the macaque: Anatomic location and visual response properties, J. Neurophysiol. 69: 902–914.PubMedGoogle Scholar
  43. Colby, C. L., Duhamel, J.-R., and Goldberg, M. E., 19936, The analysis of visual space by the lateral intraparietal area of the monkey: The role of extraretinal signals, Prog. Brain Res. 95: 307–316.Google Scholar
  44. Condo, G. J., and Casagrande, V. A., 1990, Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis), J. Comp. Neurol. 293: 632–645.PubMedGoogle Scholar
  45. Cowey, A., 1964, Projection of the retina on to striate and prestriate cortex in the squirrel monkey, Saimiri sciurens, J. Neurophysiol. 27: 366–393.PubMedGoogle Scholar
  46. Cowey, A., 1981, Why are there so many visual areas? in: The Organization of. the Cerebral Cortex ( F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, MA, pp. 395–413.Google Scholar
  47. Cowey, A., and Rolls, E. T., 1974, Human cortical magnification factor and its relation to visual acuity, Exp. Brain Res. 21: 447–454.PubMedGoogle Scholar
  48. Cragg, B. G., and Ainsworth, A., 1969, The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method, Vision Res. 9: 733–747.PubMedGoogle Scholar
  49. Creutzfeldt, O. D., 1988, Extrageniculo-striate visual mechanisms: Compartmentalization of visual functions, Prog. Brain Res. 75: 307–320.PubMedGoogle Scholar
  50. Crick, F., 1984, The function of the thalamic reticular complex: The searchlight hypothesis, Proc. Natl. Acad. Sci. USA 81: 4586–4590.PubMedGoogle Scholar
  51. Crick, F. H. C., Marr, D. C., and Poggio, T., 1981, An information-processing approach to understanding the visual cortex, in: The Organization of the Cerebral Cortex ( F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, MA, pp. 505–533.Google Scholar
  52. Cusick, C. G., and Kaas, J. H., 1988, Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys, Visual Neurosci. 1: 211–237.Google Scholar
  53. Cusick, C. G., Gould, H. J., and Kaas, J. H., 1984, Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus), J. Comp. Neural. 230: 311–336.Google Scholar
  54. Daniel, P. M., and Whitteridge, D., 1961, The representation of the visual field on the cerebral cortex in monkeys, J. Physiol. (Lond.) 159: 203–221.Google Scholar
  55. Darian-Smith, C., and Gilbert, C. D., 1995, Topographic reorganization in the striate cortex of the adult cat and monkey is cortically mediated, J. Neurosci. 15: 1631–1647.PubMedGoogle Scholar
  56. DeBruyn, E. J., Casagrande, A., Beck, P. D., and Bonds, A. B., 1993, Visual resolution and sensitivity of single cells in the primary visual cortex (V 1) of a nocturnal primate (bush baby): Correlations with cortical layers and cytochrome oxidase patterns, J. Neurophysiol. 69: 3–18.PubMedGoogle Scholar
  57. Desimone, R., and Gross, C. G., 1979, Visual areas in the temporal cortex of the macaque, Brain Res. 178: 363–380.PubMedGoogle Scholar
  58. Desimone, R., and Schein, S. J., 1987, Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form, J. Neurophysiol. 57: 835–868.Google Scholar
  59. Desimone, R., and Ungerleider, L. G., 1986, Multiple visual areas in the caudal superior temporal sulcus of the macaque, J. Comp. Neurol. 248: 164–189.PubMedGoogle Scholar
  60. Desimone, R., Fleming, J., and Gross, C. G., 1980, Prestriate afferents to inferior temporal cortex: An HRP study, Brain Res. 184: 41–55.PubMedGoogle Scholar
  61. Desimone, R., Schein, S. J., Moran, J., and Ungerleider, L. G., 1985, Contour, color and shape analysis beyond the striate cortex, Vision Res. 25: 441–452.PubMedGoogle Scholar
  62. Desimone, R., Wessinger, M., Thomas, L., and Schneider, W., 1990, Atteutional control of visual perception: Cortical and subcortical mechanisms, Cold Spring Harbor Symp. Quant. Biol. 55: 963–971.PubMedGoogle Scholar
  63. Desimone, R., Moran, J., Schein, S. f., and Mishkin, M., 1993, A role for the corpus callosum in visual area V4 of the macaque, Visual Neurosci. 10: 159–171.Google Scholar
  64. DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.PubMedGoogle Scholar
  65. DeYoe, E. A., Bandettini, P., Neitz, J., Miller, D., and Winans, P., 1994, Functional magnetic resonance imaging (FMRI) of the human brain, J. Neurosci. Meth. 54: 171–187.Google Scholar
  66. Doty, R. W., Kimura, D. S., and Mogenson, G. J., 1964, Photically and electrically elicited responses in the central visual system of the squirrel monkey, Exp. Neurol. 10: 19–51.PubMedGoogle Scholar
  67. Dow, B. M., Snyder, A. Z., Vautin, R. G., and Bauer, R., 1981, Magnification factor and receptive field size in fovea) striate cortex of the monkey, Exp. Brain Res. 44: 213–228.PubMedGoogle Scholar
  68. Dreher, B., 1986, Thalamocortical and corticocortical interconnections in the cat visual system: Relation to the mechanisms of information processing, in: Visual Neuroscience (J. D. Pettigrew, K. J. Sanderson, and W. R. Levick, eds.), Cambridge University Press, Cambridge, pp. 290–314.Google Scholar
  69. Dreher, B., and Cottee, L. J., 1975, Visual receptive field properties of cells in area 18 of the cats cerebral cortex before and after acute lesions in area 17, f. Neurophysiol. 38: 735–750.Google Scholar
  70. Dreher, B., Michalski, A., Cleland, B. G., and Burke, W, 1992, Effects of selective pressure block of Y-type optic nerve fibers on the receptive field properties of neurons in area 18 of the visual cortex of the cat, Visual Neurosci. 9: 65–78.Google Scholar
  71. Dubner, R., and Brown, F. J., 1968, Response of cells to restricted visual stimuli in an association area of cat cerebral cortex, Exp. Neural. 20: 70–86.Google Scholar
  72. Dubner, R., and Zeki, S. M., 1971, Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey, Brain Res. 35: 528–532.PubMedGoogle Scholar
  73. Duhamel, J.-R., Colby, C. L., and Goldberg, M. E., 1992, The updating of the representation of visual space in parietal cortex by intended eye movements, Science 255: 90–92.PubMedGoogle Scholar
  74. Dykes, R. W., and Ruest, A., 1986, What makes a map in somatosensory cortex, in: Cerebral Cortex, Volume 5, Sensory-Motor Areas and Aspects o f Cortical Connectivity ( E. G. Jones, and A. Peters, eds.), Plenum Press, New York, pp. 1–29.Google Scholar
  75. Dykes, R. W., Landry, P., Metherate, R., and Hicks, T. P., 1984, Functional role of GABA in cat primary somatosensory cortex: Shaping receptive fields of cortical neurons, J. Neurophysiol. 52: 1066–1093.PubMedGoogle Scholar
  76. Edelman, G. M., 1981, Group selection as the basis for higher brain function, in: The Organization of the Cerebral Cortex ( F. O. Schmitt, F. G. Worden, G. Adelman, and S. G. Dennis, eds.), MIT Press, Cambridge, MA, pp. 535–563.Google Scholar
  77. Erickson, R. G., Dow, B. M., and Snyder, A. Z., 1989, Representation of the fovea in the superior temporal sulcus of the macaque monkey, Exp. Brain Res. 78: 90–112.PubMedGoogle Scholar
  78. Felleman, D. J., and Van Essen, D. C., 1987, Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex, J. Neurophysiol. 57: 889–920.PubMedGoogle Scholar
  79. Felleman, J., and Van Essen, I). C., 1991, Distributed hierarchical processing in primate cerebral cortex, Cerebral Cortex 1: 1–47.Google Scholar
  80. Fiorani, M., Gattass, R., Rosa, M. G. P., and Sousa, A. P. B., 1989, Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability, J Comp. Neurol. 287: 98–118.PubMedGoogle Scholar
  81. Fiorani, M., Rosa, M. G. P., Gattass, R., and Rocha-Miranda, C. E., 1992, Dynamic surrounds of receptive fields in primate striate cortex: A physiological basis for perceptual completion? Proc. Natl. Aced. Sci. USA 89: 8547–8551.Google Scholar
  82. Flechsig, P., 1920, Anatomie des menschlichen Gehirns und Ruckenrnarks “lhieme Press, Leipzig.Google Scholar
  83. Frien, A., Eckorn, R., Bauer, R., Woelbern, L, and Kehr, H., 1994, Stimulus-specific fast oscillations at zero phase between visual areas VI and V2 of the awake monkey, NeuroReport 5: 2273–2277.Google Scholar
  84. Fritsches, K., 1995, Visuotopic organization in the primary and second visual areas of the marmoset, Diplomarbeit Thesis, Technischen Hochschule Darmstadt.Google Scholar
  85. Frostig, R., 1994, What does in vivo optical imaging tell us about the primary visual cortex in primates? in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press, New York, pp. 331–358.Google Scholar
  86. Galletti, C., Battaglini, P. P., and Fattori, P., 1990, Functional properties of neurons in the anterior bank of the parieto-occipital sulcus of the macaque monkey, Eur. J. Neurosci. 3: 452–461.Google Scholar
  87. Gaska, J. P., Jacobson, L. D., and Pollen, D. A., 1987, Response suppression by extending sine-wave gratings within the receptive fields of neurons in visual cortical area Via of the macaque monkey, Vision Res. 27: 1687–1692.PubMedGoogle Scholar
  88. Gattass, R., and Gross, C. G., 1981, Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque, J Neurophysiol. 46: 621–638.PubMedGoogle Scholar
  89. Gattass, R., Gross, C. G., and Sandell, J. H., 1981, Visual topography of V2 in the macaque, J Comp. Neurol. 201: 519–539.PubMedGoogle Scholar
  90. Gattass, R., Sousa, A. P. B., and Covey, E., 1985, Cortical visual areas of the macaque: Possible substrates for pattern recognition mechanisms, in: Pattern Recognition Mechanisms ( C. Chagas, R. Gattass, and C. G. Gross, eds.), Pontificial Academy of Sciences Press, Vatican City, pp. 120.Google Scholar
  91. Gattass, R., Sousa, A. P. B., and Rosa, M. G. P., 1987, Visual topography of VI in the Cebus monkey, J Comp. Neurol. 259: 529–548.PubMedGoogle Scholar
  92. Gattass, R., Sousa, A. P. B., and Gross, C. G., 1988, Visuotopic organization and extent of V3 and V4 of the macaque, J. Neurosci. 8: 1831–1845.PubMedGoogle Scholar
  93. Gattass, R., Rosa, M. G. P., Sousa, A. P. B., Pifion, M. C. G. P., Fiorani, M., and Neuenschwander, S., 1990, Cortical streams of visual information processing in primates, Brazil. J. Med. Biol. Res. 23: 375–393.Google Scholar
  94. Gilbert, C. D., and Wiesel, T. N., 1992, Receptive field dynamics in adult primary visual cortex, Nature 356: 150–152.PubMedGoogle Scholar
  95. Girard, P., and Bullier, J., 1989, Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey, J Neurophysiol. 62: 1287–1302.PubMedGoogle Scholar
  96. Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V 1, J. Neurophysiol. 67: 1437–1446.PubMedGoogle Scholar
  97. Grinvald, A., Lieke, E. E., Frostig, R. D., and Hildesheim, 1994, Cortical point-spread function and long-range lateral interactions revealed by real-tine optical imaging of macaque monkey primary visual cortex, J. Neurosci. 14: 2545–2568.PubMedGoogle Scholar
  98. Gross, C. G., and Mishkin, M., 1977, The neural basis of stimulus equivalence across retinal translation, in: Lateralizatinn in the Nervous System ( S. Hamad, R. Doty, J. Jaynes, L. Goldstein, and G. Krauthamer, eds.), Academic Press, New York, pp. 109–122.Google Scholar
  99. Gross, C. G., Schiller, P. H., Wells, C., and Gerstein, G. L., 1967, Single-unit activity in temporal association cortex of the monkey, J. Neurophysiol. 30: 833–843.PubMedGoogle Scholar
  100. Gross, C. G., Bender, D. B., and Rocha-Miranda, C. E., 1969, Visual receptive fields of neurons in inferotemporal cortex of the monkey, Science 166: 1303–1306.PubMedGoogle Scholar
  101. Gross, C. G., Bruce, C. J., Desinone, R., Fleming, J., and Gattass, R., 1981, Cortical visual areas of the temporal lobe: Three areas in the macaque, in: Cortical Sensory Organization, Volume 2, Multiple Visual Areas ( C. N. Woolsey, ed.), Humana Press, Clifton, NJ, pp. 187–216.Google Scholar
  102. Hall, W. C., Kaas, J. H., Killackey, 11., and Diamond, 1. T., 1971, Cortical visual areas in the grey squirrel (Sciur~us caroliuensis): A correlation between cortical evoked potential maps and architectonic subdivisions, J. Nenrophys 34: 437–452.Google Scholar
  103. Heinen, S., and Skavenski, A. A., 1991, Recovery of visual responses in fovea) VI neurons following bilateral fovea) lesions in adult monkey, Exp. Brain Res. 83: 670–674.PubMedGoogle Scholar
  104. Hicks, F., and Dykes, R. W., 1983, Receptive field size for certain neurons in primary somatosensory cortex is determined by GABA-mediated intracortical inhibition, Brain Res. 274: 160–164.PubMedGoogle Scholar
  105. Hubel, D. H., and Livingstone, M. S., 1985, Complex-unoriented cells in a subregion of primate area 18, Nature 315: 325–327.PubMedGoogle Scholar
  106. Hubel, H., and Livingstone, M. S., 1987, Segregation of form, color, and stereopsis in primate area 18, J. Neurosci. 7: 3378–3415.PubMedGoogle Scholar
  107. Hubel, H., and Wiesel, “F. N., 1965, Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat, J. Neurophysiol. 28: 229–289.Google Scholar
  108. Hubel, H., and Wiesel, F. N., 1969, Visual area of the lateral suprasylvian gyros (Clare-Bishop area) of the cat, J. Physiol. (Lond.) 202: 251–260.Google Scholar
  109. Hubel, H., and Wiesel, T. N., 1970, Cells sensitive to binocular depth in area 18 of the macaque monkey cortex, Nature 225: 41–42.PubMedGoogle Scholar
  110. Hubel, H., and Wiesel, T. N., 1974, Uniformity of monkey striate cortex: A parallel relationshipGoogle Scholar
  111. between field size, scatter, and magnification factor, J. Comp. Neurol. 158: 295–306.Google Scholar
  112. Hubel, D. H., and Wiesel, T. N., 1977, Functional architecture of macaque visual cortex, Proc. R. Soc. London. B 198: 1–59.Google Scholar
  113. Hughes, A., 1977, The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization, in: Handbook of Sensory Physiology, Volume VII J 5, The Visual System in Vertebrales ( F. Crescitelli, ed.), Springer-Verlag, Berlin, pp. 613–756.Google Scholar
  114. Imig, “F. J., Reale, R. A., and Brugge, J. F., 1982, The auditory cortex: Patterns of corticocortical projections related to physiological maps in the cat, in: Cortical Sensory Organization Volume 3, Multiple Auditory Areas (C. N. Woolsey, ed.), Humana Press, Clifton, NJ, pp. 1–41.Google Scholar
  115. Irvine, R. F., 1992, Physiology of the auditory brainstem, in: The Mammalian Auditory 1atltzvay: Neurophysiology ( A. N. Popper, and R. R. Fay, eds.), Springer-Verlag, Berlin, pp. 153–231.Google Scholar
  116. Jain, N., Preuss, T. M., and Kaas, J. H., 1994, Subdivisions of the visual system labeled with the Cat-301 antibody in tree shrews, Visual Neurosci. 11: 731–74I.Google Scholar
  117. Jones, E. G., 1993, GABAergic neurons and their role in cortical plasticity in primates, Cerebral Cortex 3: 361–372.PubMedGoogle Scholar
  118. Kaas, J. H., 1989, Why does the brain have so many visual areas?, J. Cognitive Neurosci. 1: 121–135.Google Scholar
  119. Kaas, J. H., and Morel, A., 1993, Connections of visual areas of the upper temporal lobe of owl monkeys: The MT crescent and dorsal and ventral subdivisions of EST, J Neurosci. 13: 534–546.PubMedGoogle Scholar
  120. Kaas, J. H., and Preuss, T. M., 1993, Archontan affinities as reflected in the visual system, in: Mammalian Phylogeny ( F. Szalay, M. Novacek, and M. McKenna, eds.), Springer-Verlag, New York, pp. 115–128.Google Scholar
  121. Kaas, J., Hall, W. C., and Diamond, I. T., 1970, Cortical visual areas I and 11 in the hedgehog: The relation between evoked potential maps and architectonic subdivisions, J. Neurophysiol. 33: 595–615.PubMedGoogle Scholar
  122. Kaas, J. H., Hall, W. C., Killackey, H., and Diamond, 1. 1., 1972, Visual cortex of the tree shrew (Tupaia gin): Architectonic subdivisions and representation of the visual field, Brain Res. 42: 491–496.PubMedGoogle Scholar
  123. Kaas, J. H., Krubitzer, L. A., Chino, Y. M., Langston, A. L., Polley, E. H., and Blair, N., 1990, Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina, Science 248: 229–231.Google Scholar
  124. Karten, H. J., 1979, Visual lemniscal pathways in birds, in: Neural Mechanisms of Behavior in the Pigeon ( A. M. Granda and J. H. Maxwell, eds.), Plenum Press, New York, pp. 409–430.Google Scholar
  125. Kitano, M., Niiyama, K., Kasamatsu, T., Sutter, E. E., and Norcia, A. M., 1994, Retinotopic and nonretinotopic field potentials in cat visual cortex, Visual Neurosci. 11: 953–977.Google Scholar
  126. Koch, C., and Ullman, S., 1985, Shifts in selective visual attention: Towards the underlying neural circuitry, Hum. Neurobiol. 4: 219–227.PubMedGoogle Scholar
  127. Kohonen, T., 1989, Self-Organization and Associative Memory, 3rd ed., Springer-Verlag, Berlin.Google Scholar
  128. Kolarik, R. C., Rasey, S. K., and Wall, J. T., 1994, The consistency, extent, and locations of early-onset changes in cortical nerve dominance aggregates following injury of nerves to primate hands, J Neurosci. 14: 4269–4288.PubMedGoogle Scholar
  129. Komatsu, H., and Wurtz, R. H., 1988, Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons, J. Neurophysiol. 60: 580–603.PubMedGoogle Scholar
  130. Krubitzer, L. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161–165.PubMedGoogle Scholar
  131. Krubitzer, L. A., and Kaas, J. H., 1990, Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns, Visual Neurosci. 5: 165–204.Google Scholar
  132. Krubitzer, L. A., and Kaas, J. H., 1993, The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates, J. Comp. Neurol. 334: 497–528.PubMedGoogle Scholar
  133. Krubitzer, L. A., Clarey, J., Tweedale, R., Elston, G., and Gafford, M., 1995, A redefinition of somatosensory areas in the lateral sulcus of macaque monkeys, J. Neurosci. 15: 3821–3839.PubMedGoogle Scholar
  134. Laskin, S. E., and Spencer, W. A., 1979, Cutaneous masking. IL Geometry of excitatory and inhibitory receptive fields of single units in somatosensory cortex of the cat, J Neurophysiol. 42: 1061–1082.PubMedGoogle Scholar
  135. Lee, D., and Malpeli, J. G., 1994, Global form and singularity: Modeling the blind spots role in lateral geniculate morphogenesis, Science 263: 1292–1294.Google Scholar
  136. Leventhal, A. G., Thompson, K. G., Liu, D., Zhou, Y., and Ault, S. J., 1995, Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex, J. Neurosci. 15: 1808–1818.Google Scholar
  137. Levi, D. M., Klein, S. A., and Aitsebaomo, A. P., 1985, Vernier acuity, crowding and cortical magnification, Vision Res. 25: 963–977.PubMedGoogle Scholar
  138. Levitt, J. B., Kiper, D. C., and Movshon, J. A., 1994a, Receptive fields and functional architecture of macaque V2, J. Neurophysiol. 71: 2517–2542.PubMedGoogle Scholar
  139. Levitt, J. B., Yoshioka, T., and Lund, J. S., 1994b, Intrinsic cortical connections in macaque visual area V2: Evidence for interactions between different functional streams, J. Contp. Neurol. 342: 551–570.Google Scholar
  140. Lin, C. S., Weller, R. E., and Kaas, J. H., 1982, Cortical connections of striate cortex in owl monkeys, 1. Comp. Neurol. 211: 165–176.Google Scholar
  141. Lvingstone, M. S., and Hubel, D. H., 1982, Thalamic input to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79: 6098–6101.Google Scholar
  142. Livingstone, M. S., and Hubel, I). H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  143. Lund, J. S., Yoshioka, T., and Levitt, J. B., 1993, Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex, Cerebral Cortex 3: 148–162.PubMedGoogle Scholar
  144. Maguire, W. M., and Baiter, J. S., 1984, Visuotopic organization of the prelunate gyrus in rhesus monkey, J. Neurosci. 4: 1690–1704.PubMedGoogle Scholar
  145. Malach, R., 1994, Cortical columns as devices for maximizing neuronal diversity, Trends Neurosci. 17: 101–104.PubMedGoogle Scholar
  146. Malach, R., Iòotell, R. B. H., and Malonek, D., 1994, Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2, Cerebral Cortex 4: 151–165.Google Scholar
  147. Malonek, D., Motel, R. B. H., and Griuvald, A., 1994, Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT, Proc. R. Soc. Lund. B 258: 109–119.Google Scholar
  148. Maunsell, J. H. R., and Van Essen, D. C., 1983, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey, J Neurosci. 3: 2563–2586.PubMedGoogle Scholar
  149. Maunsell, J. H. R., and Van Essen, D. C., 1987, Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries, J. Comp. Neural. 266: 535–555.Google Scholar
  150. Mcllwain, J. T., 1975, Visual receptive fields and their images in superior colliculus of the cat, J. Neurophysiol. 38: 219–230.Google Scholar
  151. Mcllwain, J. T., 1976, Large receptive fields and spatial transformations in the visual system, Int. Rev. Pltysiol. 10: 223–248.Google Scholar
  152. Mcllwain, J. L, 1983, Representation of the visual streak in visuotopic maps of the cats superior colliculus: Influence of the mapping variable, Vision Res. 23: 507–516.Google Scholar
  153. Mcllwain, J. T., 1995, Lateral geniculate lamination and the corticogeniculate projection: A potential role in binocular vision in the quadrants, J. Theor. Biol. 172: 329–333.Google Scholar
  154. Mitchison, G., 1995, A type of duality between self-organizing maps and minimal wiring, Neural Computation. 7: 25–35.Google Scholar
  155. Montero, V. M., Rojas, A., and Iòrrealba, F., 1973, Retinotopic organization of striate and prestriatc visual cortex in the albino rat, Brain Res. 53: 202–207.PubMedGoogle Scholar
  156. Moran, J., and Desimone, R., 1985, Selective attention gales visual processing in the extrastriate cortex, Science 229: 782–784.Google Scholar
  157. Morel, A., Garraghty, P. E., and Kaas, J. H., 1993, lbnotopic organization, architecture fields, and connections of auditory cortex in macaque monkeys, J. Comp. Neurol. 335: 437–459.Google Scholar
  158. Motter, B. C., and Mountcastle, V. B., I98I,Fhe functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Fovea! sparing and opponent vector organization, J. Neurosci. 1: 3–26.Google Scholar
  159. Motter, B. C., and Poggio, G. F., 1990, Dynamic stabilization of receptive fields of cortical neurons (VI) during fixation of gaze in the macaque, Exp. Brain Res. 83: 37–43.PubMedGoogle Scholar
  160. Motter, B. C., Steinmetz, M. A., Duffy, C. J., and Mountcastle, V. B., 1987, Functional properties of parietal visual neurons: Mechanisms of directionality along a single axis, J. Neurosci. 7: 154–176.Google Scholar
  161. Mountcastle, V. B., and Powell, T. P. S., 1959, Neural mechanisms subserving cutaneous sensibility, with special reference to the role of afferent inhibition in sensory perception and discrimination, Bull. Johns Hopkins Hosp. 105: 201–232.PubMedGoogle Scholar
  162. Myers, R. E., 1962, Commissural connections between occipital lobes of the monkey, J Comp. Neurol. 118: 1–16.PubMedGoogle Scholar
  163. Nelson, J. 1., Salin, P. A., Munk, M. H. J., Arzi, M., and Bullier, J., 1992, Spatial and temporal coherence in corticocortical connections: A cross-correlation study in area 17 and area 18 in the cat, Visual Neurosci. 9: 21–37.Google Scholar
  164. Neuenschwandcr, S., Gattass, R., Sousa, A. P. B., and Pinon, M. C. G. P., 1994, Identification and visuotopic organization of areas PO and POd in Cebus monkey, J. Comp. Neurol. 340: 65–86.Google Scholar
  165. Newsome, W. T., and Allman, J. M., 1980, Interhemispheric connections of visual cortex in the owl monkey, Aotus lrivirgatus, and the bushbaby, Galago senegalensis., J. Comp. Neurol. 194: 209–233.Google Scholar
  166. Newsome, W. T., Wurtz, R. H., Dursteler, M. R., and Mikami, A., 1985, Deficits in visual motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey, J. Neurosci. 5: 825–840.PubMedGoogle Scholar
  167. Newsome, W. T., Maunsell, J. H. R., and Van Essen, D. C., 1986, Ventral posterior visual area of the macaque: Visual topography and areal boundaries, J. Comp. Neurol. 252: 139–153.PubMedGoogle Scholar
  168. Olavarria, J., and Torrealba, F., 1978, The effect of acute lesions of the striate cortex ou the reti- notopic organization of the lateral peristriate cortex in the rat, Brain Res. 151: 386–39I.PubMedGoogle Scholar
  169. Olavarria, J. F., DeYoe, E. A., Knierim, J. J., Fox, J. M., and Van Essen, D. C., 1992, Neural responses to visual texture patterns in middle temporal area of the macaque monkey, J. Neurophy.siol. 68: 164–181.Google Scholar
  170. Paolini, M., Sereno, M. I., leo, R., Dobbins, A., and Allman, J. A., 1994, Organization of extrastriate cortex in the primitive primates, Cheirogaleus and Lemur, Soc. Neurosci. Abslr. 20: 427.Google Scholar
  171. Payne, B. R., and Siwek, D. F., 1990, Receptive fields of neurons at the confluence of cerebral cortical areas 17, 18, 20a, and 20b in the cat, Visual Neuroses. 4: 475–479.Google Scholar
  172. Pearson, J. C., Finkel, L. H., and Edelman, G. M., 1987, Plasticity in the organization of adult cerebral cortical maps: A computer simulation based on neuronal group selection, J. Neurosci. 7: 4209–4223.PubMedGoogle Scholar
  173. Perkel, D. J., Bullier, J., and Kennedy, H., 1986, Topography of the afferent connectivity of area 17 in the macaque monkey: A double-labelling study, J. Comp. Neurol. 253: 374–402.PubMedGoogle Scholar
  174. Perrett, D. I., Smith, P. A. J., Potter, D. D., Mistlin, A. J., Head, A. S., Milner, A. 1)., and Jeeves, M. A., 1985, Visual cells in the temporal cortex sensitive to face view and gaze direction, Proc. R. Soc. Loud. B 223: 293–317.Google Scholar
  175. Perrett, D. I., Harries, M. H., Mistlin, A. J., Hietanen, J. K., Benson, P. J., Bevan, R., Thomas, S., Oram, M. W., Ortega, J., and Brierley, K., 1990, Social signals analyzed at the single cell level: Someone is looking at me, something touched me, something moved! Int. J. Comp. Psycho(. 4: 25–55.Google Scholar
  176. Pessoa, V. F., Abrahâo, J. C. H., Pacheco, R. A., Pereira, L. C. M., Magalhäes-Castro, B., and Saraiva, P. E. S., 1992, Relative size of cortical visual areas in marmosets: Functional and phylogenetic implications, Exp. Brain Res. 88: 459–462.PubMedGoogle Scholar
  177. Peterhans, E., and von der Heydt, R., 1993, Functional organization of area V2 in the alert macaque, Eur. J. Neurosci. 5: 509–524.PubMedGoogle Scholar
  178. Peters, A., and Sethares, C., 1991, Organization of pyramidal neurons in area 17 of monkey visual cortex, J. Cone. Neurol. 306: 1–23.Google Scholar
  179. Peters, A., Payne, B. R., and Budd, J., 1994, A numerical analysis of the geniculocortical input to striate cortex in the monkey, Cerebral Cortex 4: 215–229.PubMedGoogle Scholar
  180. Pettigrew, J., Jamieson, B. G. M., Robson, S. K., Hall, L. S., McAnally, K. 1., and Cooper, H. M., 1989, Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates), Phil. Trans. R. Soc. Loral. B 325: 489–559.Google Scholar
  181. Phillips, P., Semple, M. N., Calford, M. B., and Kitzes, L. M., 1994, Level-dependent representa-tion of stimulus frequency in cat primary auditory cortex, Exp. Brain Res. 102: 210–226.PubMedGoogle Scholar
  182. Poggio, F., Torre, V., and Kochi, C., 1985, Computational vision and regularization theory, Nature 317: 314–319.PubMedGoogle Scholar
  183. Preuss, T. M., Beck, P. 1)., and Kaas, J. H., 1993, Areal, modular, and connectional organization of visual cortex in a prosimian primate, the slow loris (Nyclicebus courang), Brain Behan. Evol. 42: 321–335.Google Scholar
  184. Raiguel, S. E., Lagac, H, Gulyas, B., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas VI, V2 and V5, Brain Res. 493: 155–159.PubMedGoogle Scholar
  185. Rakic, P., 1988, Specification of cerebral cortical areas, Science 241: 170–176.PubMedGoogle Scholar
  186. Robinson, L., Goldberg, M. E., and Stanton, G. B., 1978, Parietal association cortex in the primate. Sensory mechanisms and behavioral modulations. J. Neurophysiol. 41: 910–932.Google Scholar
  187. Rockland, K. S., 1985, A reticular pattern of intrinsic connections in primate area V2 (area 18), J. Comp. Neurol. 235: 467–478.PubMedGoogle Scholar
  188. Rockland, K. S., and Pandya, I). N., 1979, Laminar origin and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.PubMedGoogle Scholar
  189. Rodman, H. R., Gross, C. G., and Albright, T. D., 1989, Afferent basis of visual response properties in area MT of the macaque. 1. Effects of striate cortex removal, J. Neurosci. 9: 2033–2050.PubMedGoogle Scholar
  190. Rodman, H. R., Gross, C. G., and Albright, T. D., 1990, Afferent basis of visual response properties in area Ml of the macaque. II. Effects of superior colliculus removal, J. Neurosci. 10: 1154–1164.Google Scholar
  191. Roe, A. W., and Iso, I). Y., 1995, Visual topography in primate V2: Multiple representations across functional stripes, J. Neurosci. 15: 3689–3715.PubMedGoogle Scholar
  192. Rolls, E. T., and Cowey, A., 1970, Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys, Exp. Brain Res. 10: 298–310.PubMedGoogle Scholar
  193. Rosa, M. G. P., and Schmid, L. M., 1994, “topography and extent of visual-field representation in the superior colliculus of the neegachiropteran Pteropcs, Visual Neurosci. 11:1037–1057.Google Scholar
  194. Rosa, M. G. P., and Schmid, L. M., 1995, Visual areas in the dorsal and medial extrastriate cortices of the marmoset, J. comp. Neurol. 359: 272–299.PubMedGoogle Scholar
  195. Rosa, M. G. P., Gattass, R., and Fiorani, M., 1988a, Complete pattern of ocular dominance stripes in VI of a New World monkey, Cehus apella, Exp. Brain Res. 72: 645–648.Google Scholar
  196. Rosa, M. G. P., Sousa, A. P. B., and Cat lass, R., 1988b, Representation of the visual field in the second visual area in the Cebus monkey, J. Comp. Neural. 275: 326–345.Google Scholar
  197. Rosa, M. G. y, Gattass, R., and Soares, J. G. M., 1991, A quantitative analysis of cytochronee oxidaserich patches in the primary visual cortex of Cehus monkeys: Topographic distribution and effects of late monocular euucleation, Exp. Brain Res. 84: 195–209.PubMedGoogle Scholar
  198. Rosa, M. G. P., Schmid, L. M., Krubitzer, L. A., and Pettigrew, J. 1)., 1993a, Retinotopic organization of the primary visual cortex of flying foxes (Pteropus poliocephalus and Pteropus scapula J us). J. Comp. Neural. 335: 55–72.Google Scholar
  199. Rosa, M. G. P., Snares, J. G. M., Fiorani, M., and Gattass, R., 1993b, Cortical afferents of visual area MT in the Cehus monkey: Possible homologies between New and Old World monkeys, Visual Neurosci. 10: 827–855.Google Scholar
  200. Rosa, M. G. P., Schmid, L. M., and Pettigrew, J. D., 1994, Organization of the second visual area in the megachiropteran bat Plero J ms, Cerebral Cortex 4: 52–68.Google Scholar
  201. Rosa, M. G. P., Schmid, L. M., and Gafford, M. B., 1995a, Responsiveness of cat area 17 after monocular inactivation: Limitation of topographic plasticity in adult cortex, J. Physiol. (Load.) 482: 589–608.Google Scholar
  202. Rosa, M. G. P., Schmid, L. M., and Clarey, J. C., 1995b, Visual areas in the extrastriate cortex of the marmoset, Soc. Neurosci. Abslr. 21: 903.Google Scholar
  203. Rosa, M. G. P., Casagrande, V. A., Preuss, L, and Kaas, J. H., 1997a, Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetli), J. Neurophyslol. 77: 3193–3217.Google Scholar
  204. Rosa, M. G. P., Fritsches, K. A., and Elston, G. N., 1997b, The second visual area in the marmoset monkey: Magnification factors, architectural boundaries, and modularity, J. Comp. Neurol. in press.Google Scholar
  205. Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., and Iwai, E., 1986, Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey, J. Neurosci. 6: 145–157.PubMedGoogle Scholar
  206. Salin, P.-A., and Bullier, J., 1995, Corticocortical connections in the visual system: Structure and function, Physiol. Rev. 75: 107–154.PubMedGoogle Scholar
  207. Schein, S. J., and Desimone, R., 1990, Spectral properties of V4 neurons in the macaque, J Neurosci. 10: 3369–3389.PubMedGoogle Scholar
  208. Schein, S. J., Marrocco, R. 1., and DeMonasterio, F. M., 1982, Is there a high concentration of color-selective cells in area V4 of monkey visual cortex? J. Neurophysiol. 47: 193–213.Google Scholar
  209. Schiller, P. H., and Malpeli, J. G., 1977, The effect of cooling striate cortex on area 18 cells in the monkey, Brain Iles. 126: 366–369.Google Scholar
  210. Schmid, L. M., Rosa, M. G. P., and Calford, M. B., 1995, Retinal detachment induces massive immediate reorganization in visual cortex, NeuroReport 6: 1349–1353.PubMedGoogle Scholar
  211. Schmid, L. M., Rosa, M. G. P., Calford, M. B., and Ambler, J. S., 1996, Visuotopic reorganisation in the primary visual cortex of adult cats following monocular and binocular retinal lesions, Cerebral Cortex 6: 388–405.PubMedGoogle Scholar
  212. Schmidt, J. F., 1985, Formation of retinotopic connections: Selective stabilization by an activity-dependent mechanism, Cell. Mol. Neurobiol. 5: 65–84.Google Scholar
  213. Schreiner, C. E., 1991, Functional topographies in the primary auditory cortex of the cat, Acta Otolaryngol. Suppl. 491: 7–16.PubMedGoogle Scholar
  214. Schreiner, C. E., 1995, Order and disorder in auditory cortical maps, Curr. Opin. Neurobiol. 5: 489–496.PubMedGoogle Scholar
  215. Schreiner, C. E., and Sutter, M. L., 1992, Topography of excitatory bandwidth in cat primary auditory cortex: Single-neuron versus multiple-neuron recordings, J. Neurophysiol. 68: 1487–1502.PubMedGoogle Scholar
  216. Schwartz, FI. 1., 1977, Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception, Biol. Cybernel. 25: 181–194.Google Scholar
  217. Sereno, M. l., and Allman, J. M., 1991, Cortical visual areas in mammals, in: Vision and Visual Dysfunction, Volume 4, The Neural Basis of Visual Function ( A. G. Leventhal, ed.), Macmillan, London, pp. 160–172.Google Scholar
  218. Sereno, M. I., McDonald, C. T., and Allman, J. M., 1987, Multiple visual areas between V2 and MT in the owl monkey, Soc. Neurosci. Abstr. 13: 625.Google Scholar
  219. Sereno, M. 1., McDonald, C. T., and Allman, J. M., 1994, Analysis of retinotopic maps in extrastriate cortex, Cerebral Cortex 4: 601–620.Google Scholar
  220. Sereno, M. I., Dale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, F. J., Rosen, B. R., and lbotell, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268: 889–893.Google Scholar
  221. Sesma, M. A., Casagrande, V. A., and Kaas, J. H., 1984, Cortical connections of area 17 in tree shrews, J. Comp. Neurol. 230: 337–351.PubMedGoogle Scholar
  222. Sherk, H., 1978, Area 18 cell responses in the cat during reversible inactivation of area 17, J. Neurophysiol. 41: 204–215.PubMedGoogle Scholar
  223. Sherk, H., and Mulligan, K., 1992, Retinotopic order is surprisingly good within cell columns in the cats lateral suprasylvian cortex, Exp. Brain Res. 91: 46–60.PubMedGoogle Scholar
  224. Sherk, H., and Mulligan, K. A., 1993, A reassessment of the lower visual field map in striate-recipient lateral suprasylvian cortex, Visual Neurosci. 10: 131–158.Google Scholar
  225. Shimizu, T., Cox, K., and Karten, H. J., 1995, Intratelencephalic projections of the visual wulst in pigeons (Columba livia), J. Comp. Neurol. 359: 551–572.PubMedGoogle Scholar
  226. Shipp, S., and Zeki, S., 1989, The organization of connections between area V5 and V2 in macaque monkey visual cortex, Fur. J. Neurosci. 1: 333–354.Google Scholar
  227. Sillito, A. M., 1984, Functional considerations of the operation of GABAergic inhibitory processes in the visual cortex, in: Cerebral Cortex, Volume 2, Functional Properties ofCortical Cells ( E. G. Jones, and A. Peters, eds.), Plenum Press, New York, pp. 91–117.Google Scholar
  228. Singer, W., 1994, Coherence as an organizing principle of cortical functions, lot. Rev. Neurobiol. 37: 153–183.Google Scholar
  229. Sousa, A. P. B., Pinon, M. C. G. P., Gattass, R., and Rosa, M. G. P., 1991, Topographic organization of cortical input to striate cortex in the Cebus monkey: A fluorescent tracer study, J. Comp. Neurol. 308: 665–682.PubMedGoogle Scholar
  230. Spatz, W. B., 1977, Topographically organized reciprocal connections between areas 17 and MT (visual area of the superior temporal sulcus) in the marmoset Callithrix jacchus, Exp. Brain Res. 27: 559–572.Google Scholar
  231. Spatz, W. B., and Figges,J., 1972, Species difference between Old World and New World monkeys in the organization of the striate—prestriate association, Brain Res. 43: 591–594.PubMedGoogle Scholar
  232. Spatz, W. B.,Figges,J., and Tigges, M., 1970, Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri), J. Comp. Neurol. 140: 155–174.Google Scholar
  233. Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA 50: 703–709.PubMedGoogle Scholar
  234. Steele, G. E., Weller, R. E., and Cusick, C. G., 1991, Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys, J. Comp. Neurol. 306: 495–520.PubMedGoogle Scholar
  235. Stepniewska, I., and Kaas, J. H., 1996, Topographic patterns of V2 cortical connections in macaque monkeys, J. Comp. Neurol. 371: 129–152.PubMedGoogle Scholar
  236. Stuermer, C. A. O., 1991, The formation of topographically ordered connections during development and regeneration of the vertebrate visual system, in: Vision and Visual Dysfunction, Volume II, Development anti Plasticity of the Visual System ( J. Cronly-Dillon, ed.), Macmillan, London, pp. 88–111.Google Scholar
  237. Sutherland, N. S., 1973, Object recognition, in: Handbook of Perception, Volume III, Biology of Perceptual Systems (E. C. Carterette, and M. l. Friedman, eds.), Academic Press, New York, pp. 157–185.Google Scholar
  238. Sutter, M. L., and Schreiner, C. E., 1991, Physiology and topography of neurons with multipeaked tuning curves in cat primary auditory cortex, J. Neurophysiol. 65: 1207–1226.PubMedGoogle Scholar
  239. Swindale, N. V., 1991, Coverage and the design of striate cortex, Biol. Cybernet. 65: 415–426.Google Scholar
  240. Talbot, S. A., 1942, A lateral localization in the cats visual cortex, Fed. Proc. 1: 84.Google Scholar
  241. Tanaka, K., Hikosaka, K., Saito, H., Yukie, M., Fukada, Y., and Iwai, E., 1986, Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey, J Neurosci. 6: 134–144.PubMedGoogle Scholar
  242. Tigges,., Spatz, W. B., and Figges, M., 1974, Efferent cortico-cortical fibre connections of area 18 in the squirrel monkey (Saimiri), J. Comp. Neurol. 158: 219–236.Google Scholar
  243. Tigges, f., Tigges, M., Anschel, S., Cross, N. A., l.etbetter, W. D., and McBride, R. L., 1981, Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19 and MT in squirrel monkey (Saimiri), J. Comp. Neural. 202: 539–560.Google Scholar
  244. Tootell, R. B. H., and Hamilton, S. L., 1989, Functional anatomy of the second visual area (V2) in the macaque, J. Neurosci. 9: 2620–2644.PubMedGoogle Scholar
  245. Tbotell, R. B. H., and Taylor,J. B., 1995, Anatomical evidence for MT and additional cortical visual areas in humans, Cerebral Cortex 5: 39–55.Google Scholar
  246. Tootell, R. B. H., Silverman, M. S., Switkes, E., and DeValois, R. L., 1982, Deoxyglucose analysis of retinotopic organization in primate striate cortex, Science 218: 902–904.PubMedGoogle Scholar
  247. Tootell, R. B. H., Silverman, M. S., 1)e Valois, R. L., and Jacobs, G. H., 1983, Functional organization of the second cortical visual area of primates, Science 220: 737–739.Google Scholar
  248. Tootell, R. B. H., Hamilton, S. I., and Silverman, M. S., 1985, Topography of cytochrome oxidase activity in the owl monkey cortex, J. Neurosci. 5: 2786–2800.PubMedGoogle Scholar
  249. Tootell, R. B. H., Switkes, E., Silverman, M. S., and Hamilton, S. L., 1988, Functional anatomy of macaque striate cortex. 11. Retinotopic organization, J. Neurosci. 8: 1531–1568.PubMedGoogle Scholar
  250. Tripathy, S., Levi, D. M., Ogmen, H., and Harden, C., 1995, Perceived length across the physiological blind spot, Visual Neurosci. 12: 385–402.Google Scholar
  251. Tusa, R. J., Rosenquist, A. C., and Palmer, I., A., 1979, Retinotopic organization of areas 18 and 19 in the eat, J Comp. Neural. 185: 657–678.Google Scholar
  252. Ungerleider, 1., G., and Desimone, R., 1986, Projections to the superior temporal sulcus from the central and peripheral field representations of VI and V2, J. Comp. Neural. 248: 147–163.Google Scholar
  253. Ungerleider, I., G., and Mishkin, M., 1979, The striate projection zone in the superior temporal sulcus of Macaca mulatta: Location and topographic organization, J Comp. Neural. 188: 347–366.Google Scholar
  254. Ungerleider, L. G., and Mishkin, M., 1982, Two cortical systems, in: Analysis of Visual Behavior ( D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 549–586.Google Scholar
  255. Van Essen, D. C., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex, Volume 3, Visual Cortex ( A. Peters, and E. G. Jones, eds.), Plenum Press, New York, pp. 259–329.Google Scholar
  256. Van Essen, D. C., and Anderson, C. H., 1990, Information processing strategies and pathways in the primate retina and visual cortex, in: An Introduction to Neural and Electronic Networks (S. F. Zornetzer, J. I., Davis, and C. Lau, eds.), Academic Press, New York, pp. 43–72.Google Scholar
  257. Van Essen, D. C., and Zeki, S. M., 1978, The topographic organization of rhesus monkey prestriate cortex, J Physiol. (Lond.) 277: 193–226.Google Scholar
  258. Van Essen, D. C., Maunsell, J. H. R., and Bixby, J. I., 1981, The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization, J. Comp. Neurol. 199: 293–326.PubMedGoogle Scholar
  259. Van Essen, D. C., Newsome, W. L, and Bixby, J. I., 1982, The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey, J Neurosci. 2: 265–283.Google Scholar
  260. Van Essen, D. C., Newsome, W. L, Maunsell, J. H. R., and Bixby, J. I., 1986, “Ihc projections from striate cortex (VI) to areas V2 and V3 in the macaque monkey: Asymmetries, areal bounderies, and patchy connections, J Comp. Neurol. 244: 451–480.Google Scholar
  261. Van Essen, D. C., Felleman, D. J., DeYoe, E. A., Olavarria, J., and Knierim, J., I990, Modular and hierarchical organization of extrastriate visual cortex in the macaque monkey, Cold Spring Harbor Symp. Quant. Biol. 55: 679–696.Google Scholar
  262. Vidyasagar, T. R., 1996, Attentional searchlight gates responses of neurones in macaque primary visual cortex, Proc. Ausl. Neurosci. Soc. 7: 36.Google Scholar
  263. Von Bonin, G., and Bailey, P., 1947, The Neocortex of Maraca mulatta, University of Illinois Press, Urbana, IL.Google Scholar
  264. Wagor, E., Lin, C. S., and Kaas, J. H., 1975, Some cortical projections of the dorsomedial visual area (I)M) of association cortex in owl monkey, Aotus trivirgalus, J. Comp. Neural. 163: 227–250.Google Scholar
  265. Wall, J. T., Symonds, L. L., and Kaas, J. H., 1982, Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in Galagos, J. Comp. Neurol. 211: 193–214.PubMedGoogle Scholar
  266. Wassle, H., Grünet, U., Rührenbeck, J., and Boycott, B., 1990, Retinal ganglion cell density and cortical magnification factor in the primate, Vision Res. 30: 1897–1911.PubMedGoogle Scholar
  267. Watson, J. G., Myers, R., Frackowiak, R. S. J., Hajnal, J. V., Woods, R. P., Mazziotta, J. C., Shipp, S., and Zeki, S. M., 1993, Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging, Cerebral Cortex 3: 79–94.PubMedGoogle Scholar
  268. Weller, R. E., and Kaas, J. H., 1983, Retinotopic patterns of connections of area 17 with areas V-II and MT in macaque monkeys, J Comp. Neurol. 220: 253–279.PubMedGoogle Scholar
  269. Weller, R. E., and Steele, G. E., 1992, Cortical connections of subdivisions of inferior temporal cortex in squirrel monkeys, J. Comp. Neural. 324: 37–66.Google Scholar
  270. Weller, R. E., Wall, J. T., and Kaas, J. H., 1984, Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys, J. Comp. Neurol. 228: 81–104.PubMedGoogle Scholar
  271. Weller, R. E., Steele, G. E., and Cusick, C. G., 1991, Cortical connections of dorsal cortex rostra to V-I1 in squirrel monkeys, J. Comp. Neural. 306: 521–537.Google Scholar
  272. Westheimer, G., 1982, The spatial grain of the perifoveal visual field, Vision Res. 22: 157–162.PubMedGoogle Scholar
  273. Wiitanen, J. T., 1969, Selective silver impregnation of degenerating axons and axon terminals in the central nervous system of the monkey (Macaca mulatta), Brain Res. 14: 546–548.PubMedGoogle Scholar
  274. Wilder, H., Grünert, U., Lee, B. B., and Martin, P. R., 1996, Topography of ganglion cells and photoreceptors in the retina of the New World marmoset monkey Callithrix jardins, Visual Neurosci. 13: 335–352.Google Scholar
  275. Wolf, F., Bauer, H.-U., and Geisel, TL, 1994, Formation of field discontinuities and islands in visual cortical maps, Biol. Cybernet. 70: 525–531.Google Scholar
  276. Wong-Riley, M., Hevner, R. F., Cutlan, R., Earnest, M., Egan, R., Frost, J., and Nguyen, f., 1993, Cytochrome oxidase in the human visual cortex: Distribution in the developing and adult brain, Visual Neurosci. 10: 41–58.Google Scholar
  277. Woolsey, C. N., Akert, K., Benjamin, R. M., Leibowitz, 11., and Welker, W. 1., 1955, Visual cortex of the marmoset, Fed. Proc. 14: 166.Google Scholar
  278. Wright, M. J., 1969, Visual receptive fields of cells in a cortical area remote from striate cortex in the cat, Nature 223: 973–975.PubMedGoogle Scholar
  279. Wurtz, R. H., Yamasaki, D. S., Duffy, C. J., and Roy, J. P., 1990, Functional specialization for visual motion processing in primate cerebral cortex, Cold Spring Harbor Symp. Quant. Biol. 55: 717–727.PubMedGoogle Scholar
  280. Zeki, S. M., 1969, Representation of central visual fields in prestriate cortex of monkey, Brain Res. 14: 271–291.Google Scholar
  281. Zeki, S. M., 1970, Interhemispheric connections of prestriate cortex in monkey, Brain Res. 19: 63–75.PubMedGoogle Scholar
  282. Zeki, S. M., 1971, Cortical projections from two prestriate areas in the monkey, Brain Res. 34: 19–35.PubMedGoogle Scholar
  283. Zeki, S. M., 1974, Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey, J. Physiol. (Fond.) 236: 549–573.Google Scholar
  284. Zeki, S. M., 1977, Simultaneous anatomical demonstration of the representation of the vertical and horizontal meridians in areas V2 and V3 of rhesus monkey visual cortex, Proc. R. Soc. Lond. B 195: 517–523.PubMedGoogle Scholar
  285. Zeki, S. M., 1978a, The third visual complex of rhesus monkey prestriate cortex, J. Physiol. (Lond.) 277: 245–272.Google Scholar
  286. Zeki, S. M., I978b, Uniformity and diversity of structure and function in rhesus monkey prestriate cortex, J. Physiol. (Lund.) 277: 273–290.Google Scholar
  287. Zeki, S. M., 1983a, Colour coding in the cerebral cortex: “File reaction of cells in monkey visual cortex to wavelengths and colours, Neuroscience 9: 741–765.PubMedGoogle Scholar
  288. Zeki, S. M., 1983b, Colour-coding in the cerebral cortex: Elie responses of wavelength-selective and colour-coded cells in monkey visual cortex to changes in wavelength composition, Neuroscience 9: 767–781.PubMedGoogle Scholar
  289. Zeki, S. M., 1983c, The distribution of wavelength and orientation selective cells in different areas of monkey visual cortex, Proc. R. Soc. Loud. 217: 449–470.Google Scholar
  290. Zeki, S. M., and Sandeman, I. R., 1976, Combined anatomical and electrophysiological studies on the boundary between the second and third visual areas of rhesus monkey cortex, Proc. R. Soc. Loud. B 194: 555–562.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Marcello G. P. Rosa
    • 1
  1. 1.Vision, Touch and Hearing Research Centre, Department of Physiology and PharmacologyThe University of QueenslandAustralia

Personalised recommendations