Theories of Visual Cortex Organization in Primates

  • Jon H. Kaas
Part of the Cerebral Cortex book series (CECO, volume 12)


The present review outlines and evaluates theories of how visual cortex is divided into areas in primates. Maps of cortical areas have long been used as guides for further research and they clearly have implications for how information is processed in the visual system. Early maps such as those of Brodmann (1909) and Von Economo (1929) have had great impact on current theories of visual cortex organization, and parts of these early theories remain in use. Yet early investigators disagreed on how extrastriate cortex is subdivided, and the usefulness of the architectonic methods used to formulate early proposals has been repeatedly questioned (e.g., Lashely and Clark, 1946). Current proposals are more complex and include many visual areas. In principle, current proposals should be more accurate because they are based on additional sorts of information, especially patterns of cortical connections and retinotopic organization. Indeed there is widespread agreement on the locations and extent of some proposed fields such as V2 and MT (V5). However, our maps of cortex also differ in many ways, suggesting that the supporting evidence is ambiguous and limited enough to allow different interpretations. As a reflection of this uncertainty, Felleman and Van Essen (1991), after an extensive review and synthesis, conclude that of 32 proposed visual areas, only five rate a high confidence level of 1 on a scale of 1–3. Possibly one might take an even more conservative view, since only three areas (V1, V2, and MT) are components of most proposals. In any case, it seems useful to review the progression from early to recent theories of cortical organization in an effort to see how they evolved and influenced each other, as well as determine both reliable features and those that require further study and evaluation.


Visual Cortex Visual Area Squirrel Monkey World Monkey Posterior Parietal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E. I., 1941, Afferent discharges to the cerebral cortex from peripheral sense organs, J. Physiol. (Loud) 100: 159–191.PubMedGoogle Scholar
  2. Albright H. I., Desimone, R., and Gross, C. G., 1984, Columnar organization of directionally selective cells in visual area MT of the macaque, J. Neurophysiol. 51: 16–31.PubMedGoogle Scholar
  3. Allman, J. M., and Kaas, J. 11., 1971a, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatu.$), Brain Res. 31: 85–105.PubMedGoogle Scholar
  4. Allman, J. M., and Kaas, J. Ff., I97Ib, Representation of the visual field in striate and adjoining cortex of the owl monkey (Aunts trzvirgalus), Brain Res. 35: 89–106.Google Scholar
  5. Allman, J. M., and Kaas, J. H., I 974a, The organization of the second visual area (V-II) in the owl monkey: A second-order transformation of the visual hemifield, Brain Res. 76: 247–265.Google Scholar
  6. Allman, J. M., and Kaas, J. I1., 1974b, A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus Irivirgatus), Brain Res. 81: 199–213.PubMedGoogle Scholar
  7. Allman, J. M., and Kaas, J. H., 1975, The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkeys (Aotns lrivirgatus), Brain Res. 100: 473–487.PubMedGoogle Scholar
  8. Allman, J. M., and Kaas, J. I I., 1976, Representation of the visual field in the medial wall of the occipital-parietal cortex in the owl monkey, Science 191: 572–576.PubMedGoogle Scholar
  9. Allman, J., Jeo, R., and Sereno, M., 1994, The functional organization of visual cortex in owl monkeys, in: Aolus: The Owl Monkey ( J. F. Baer, R. E. Weller, and I. Kakoma, eds.), Academic Press, Orlando, FL. pp. 287–320.Google Scholar
  10. Allman, J. M., Kaas, J. H., and Lane, R. H., 1973, The middle temporal visual area (MT) in the bush baby (Galago.senegalensis), Brain Res. 57: 197–202.PubMedGoogle Scholar
  11. Andersen, R. A., Asanuma, C., and Cowan, W. M., 1985, Callosal and prefrontal associational projecting cell populations in area 7a of the macaque monkey: A study using retrogradely transported fluorescent dyes, J. Comp. Neurol. 232: 493–455.Google Scholar
  12. Balzer, J. S., and Maguire, W. M., 1983, Double representation of lower visual quadrant in preluneate gyrus of rhesus monkey, Invest. Opthalmol. Vis. Sei. 24: 1436–1439.Google Scholar
  13. Balzer, J. S., Ungerleider, L. G., and Desimone, R., 1991, Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques, J. Neurosci. 11: 168–190.Google Scholar
  14. Baker, J. F., Petersen, S. E., Newsome, W. T., and Allman, J. M., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral, and middle temporal areas, J. Neurophysiol. 45: 397–416.PubMedGoogle Scholar
  15. Beck, P. D., and Kaas, J. H., 1995, Evidence for the presence of the dorsomedial visual area (DM) in five primate species, Soc. Newssci. Abstr. 21: I275.Google Scholar
  16. Blau, G. J., Andersen, R. A., and Stoner, G. R., 1990, Visual receptive field organization and corticocortical connections of the lateral intraparietal area (area LIP) in the macaque, J. Comp. Neural. 299: 421–445.Google Scholar
  17. Bonin, G. V., Garol, 1 I. W., and McCulloch, W. S., 1942, The functional organization of the occipital lobe, Biol. Syrup. 1: 165–192.Google Scholar
  18. Born, R. F., and IOotefl, R. B. H., 1992, Segregation of global and local motion processing in primate middle temporal area, Nature 357: 497–499.PubMedGoogle Scholar
  19. Boussaoud, I., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque, J. Comp. Neurol. 296: 462–495.PubMedGoogle Scholar
  20. Boussaoud, I., Desimone, R., and Ungerleider, L. G., 1991, Visual topography of area TEO in the macaque, J. Comp. Neurol. 306: 554–575.Google Scholar
  21. Brodmann, K., 1909, Vergleichende Lokatisationslehre der Grosshirnrinde, Barth, Leipzig.Google Scholar
  22. Burkhalter, A., and Van Essen, D. C., 1986, Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey, J Neurosci. 6: 2327–2351.Google Scholar
  23. Burkhalter, A., Felleman, D. J., Newsome, W. T., and Van Essen, D. C., 1986, Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex, Vision Res. 26: 63–80.PubMedGoogle Scholar
  24. Campbell, A. W., 1905, Histological Studies on the Localization of Cerebral Function, Cambridge University Press; Cambridge.Google Scholar
  25. Casagrande, V. A., and Kaas, J. H., 1994, The afferent, intrinsic, and efferent connections of primary visual cortex in primates, in: Cerebral Cortex, Volume 10, Primary Visual Cortex in Primates ( A. Peters and K. Rockland, eds.), Plenum Press, New York, pp. 201–250.Google Scholar
  26. Clarke, S., and Miklossy, J., 1990, Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas, J Comp. Neural. 208: 188–214.Google Scholar
  27. Colby, C. L., and Duhamel, J.-R., 1991, Heterogeneity of extrastriate visual areas and multiple parietal areas in macaque monkey, Neuropsyclrologia 29: 517–537.Google Scholar
  28. Colby, C. L., Gattass, R., Olson, C. R., and Gross, C. G., 1988, Iòpographical organization of cortical afferents to extrastriate area PO in the macaque: A dual tracer study, J Comp. Neural. 269: 392–413.Google Scholar
  29. Colby, C. L., Duhamel, J.-R., and Goldberg, M. E., 1993, The ventral intraparietal area (VIP) of the macaque: Anatomical location and visual response properties, J. Neuropkysiol. 69: 902–914.Google Scholar
  30. Condo, G. J., and Casagrande, V. A., 1990, Organization of cytochrome oxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis), J. Comp. Neural. 293: 632–645.Google Scholar
  31. Covey, E., Gattass, R., and Gross, C. G., 1982, A new visual area in the parietooccipital sulcus of the macaque, Soc. Neurosci. Abstr. 8: 861.Google Scholar
  32. Cowey, A., 1964, Projection of the retina on to striate and prestriate cortex in the squirrel monkey, Swoon sciureus, J. Neuruplaysiol. 27: 366–393.Google Scholar
  33. Cowey, A., and Heywood, C. A., 1995, Theres more to colour than meets the eye, Behay. Brain Res. 71: 89–100.Google Scholar
  34. Cragg, B. G., 1969, The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method, Vision Res. 9: 733–747.PubMedGoogle Scholar
  35. Curcio, C. A., and Harting, J. K., 1978, Organization of pulvinar afferents to area 18 in the squirrel monkey: Evidence for stripes, Brain Res. 143: 155–161.PubMedGoogle Scholar
  36. Cusick, C. G., and Kaas, J. H., 1986, Interhemispheric connections of cortical, sensory and motor maps in primates, in: Two Hemispheres: One Brain ( F. Lepore, M. Pitto, and H. H. Jasper, eds.), Liss, New York, pp. 83–102.Google Scholar
  37. Cusick, C. G., and Kaas, J. H., 1988, Cortical connection of area 18 and dorsolateral visual cortex in squirrel monkeys, Visual Neurosci. 1: 211–237.Google Scholar
  38. Cusick, C. G., Gould III, H. J., and Kaas, J. H., 1984, Interhemispheric connections of visual cortex of owl monkeys (Aotu• trivirgatus), marmosets (Callithrix jacchus) and galagos (Galago crassicaudatas), J. Comp. Neurol. 230: 311–336.PubMedGoogle Scholar
  39. Desimone, R., and Ungerleider, L. G., 1986, Multiple visual areas in the caudal superior temporal sulcus of the macaque, J. Comp. Neurol. 248: 164–189.Google Scholar
  40. DeYoe, E. A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area V2 of the macaque, Nature 317: 58–61.PubMedGoogle Scholar
  41. DeYoe, E. A., Hockfield, S., Garren, H., and Van Essen, D. C., 1990, Antibody labeling of functional subdivisions in visual cortex. Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey, Visual Neurosci. 5: 67–81.Google Scholar
  42. DeYoe, E. A., Carman, G., Bandettini, P., Glickman, S.J., Wieser, J., Cox, R., Miller, I., and Neitz, J., 1995, Mapping striate and extrastriate visual areas in human cerebral cortex, Proc. Natl. Acad. Sci. USA 93: 2382–2386.Google Scholar
  43. Distler, C., Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1993, Cortical connections of inferior temporal area TEO in macaque monkeys, J. Comp. Neurol. 334: 125–150.PubMedGoogle Scholar
  44. Dykes, R. W., and Ruest, A., 1986, What makes a map in somatosensory cortex? in: Cerebral Cortex, Vol. 5, Sensory-Motor Areas and Aspects of Cortical Connectivity ( E. G. Jones and A. Peters, eds.), Plenum Press, New York,pp. 1–29.Google Scholar
  45. Ebbesson, S. O. E., 1984, Evolution and ontogeny of neural circuits, Behay. Braira Sci. 7: 321–366.Google Scholar
  46. Felleman, I. J., and Kaas, J. H., 1984, Receptive field properties of neurons in the middle temporal visual are rea (MI) of owl monkeys, J. Neurophysiol. 52: 488–513.PubMedGoogle Scholar
  47. Felleman, D. J., and Van Essen, I. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1: 1–47.PubMedGoogle Scholar
  48. Felleman, D. J., Burkhalter, A., and Van Essen, I. C., 1997, Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex, J. Comp. Neurol. 379: 21–47.Google Scholar
  49. Finger, S., 1994, Origins of Neuroscience, Oxford University Press, Oxford.Google Scholar
  50. Gattass, R., and Gross, C. G., 1981, Visual topography of the striate projection zone in the posterior superior temporal sulcus (MT) of the macaque, J. Neurophysiol. 46: 521–538.Google Scholar
  51. Gattass, R., Gross, C. G., and Sandell, J. H., 1981, Visual topography of V2 in the macaque, J Comp. Neurol. 201: 519–530.Google Scholar
  52. Gattass, R., Sousa A. P. B., and Gross, C. G., 1988, Visuotopic organization and extent of V3 and V4 of the macaque, J. Neurosci. 8: 1831–1845.PubMedGoogle Scholar
  53. Goldman, P. S., and Nauta, W. J. H., 1977, Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey, Brain Res. 122: 393–414.PubMedGoogle Scholar
  54. Graham, J., Wall, J. I., and Kaas, J. H., 1978, Cortical projections of the medial visual area in the owl monkey (Autos lrivirgalus), Neurosci. Lett. 15: 109–114.Google Scholar
  55. Herrick, C. J., 1891, The problems of comparative neurology, J. Comp. Neurol. 1: 93–105.Google Scholar
  56. Hubel, D. FI., and Wiesel, T. N., 1965, Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat, J. Neurophysiol. 30: 1561–1573.Google Scholar
  57. Jones, E. G., and Powell, T. P. S., 1970, An anatomical study of converging sensory pathways within the cerebral cortex of the monkey, Brain 93: 793–820.PubMedGoogle Scholar
  58. Jouandet, M. 1.,framo, M. J., Herron, D. M., Hermann, A., Loftus, W. C., Barzell, J., and Gazzaniga, M. S., 1989, Brain prints: Computer-generated two-dimensional maps of the human cerebral cortex in vivo, J. Cognitive Neurosci. 1: 88–117.Google Scholar
  59. Kaas, J. H., 1982, The segregation of function in the nervous system: Why do the sensory systems have so many subdivisions? Contrib. Sens. Phy.siol. 7: 201–240.Google Scholar
  60. Kaas, J. H., 1988, Changing concepts of visual cortex organization in primates, in: Neuropsychology of Visual Perception ( J. W. Brown, ed.), Erlbaum, Hillsdale, NJ, pp. 1–32.Google Scholar
  61. Kaas, J. H., 1989a, lhe evolution of complex sensory systems in mammals, J Exp. Biol. 146: 165–176Google Scholar
  62. Kaas, J. H., 19896, Why does the brain have so many visual areas?“ Cognitive Neurosci. 1: 121–135.Google Scholar
  63. Kaas, J. H., 1990, Processing areas and modules in sensory-perceptual cortex, in: Signal and Sense: Local and Global Order in Perceptual Maps ( G. M., Edelman, W. E. Gall, and W. M. Cowan, eds.), Wiley, New York, pp. 67–82.Google Scholar
  64. Kaas, J. H., 1993, The organization of visual cortex in primates: Problems, conclusions, and the use of comparative studies in understanding the human brain, in: The Functional Organization of the Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. E. Roland, eds.), Pergamon Press, Oxford, pp. 1–11.Google Scholar
  65. Kaas, J. H., 1994, The organization of sensory and motor cortex in owl monkeys, in: Aotus: The Owl Monkey, Academic Press, Orlando, FL, pp. 331–351.Google Scholar
  66. Kaas, J. H., I 995a, The evolution of isocortex, Brain Behay. Evol. 46: 187–196.Google Scholar
  67. Kaas, J. H., 199%, Montan visual cortex; Progress and puzzles, Curr. Biol. 5: 1126–1128.Google Scholar
  68. Kaas, J. H., I995c, fhe organization of callosal connections in primates, in: Epilepsy and the Corpus Callosum H (A. G. Reeves and D. W. Roberts, eds.), Plenum Press, New York, pp. 15–27.Google Scholar
  69. Kaas, J. H., and Lin, C. S., 1977, Cortical projections of area I8 in owl monkeys, Vision Res. 17: 739–741.PubMedGoogle Scholar
  70. Kaas, J. H., and Morel, A., 1993, Connections of visual areas of the upper temporal lobe of owl monkeys: fhe Ml crescent and dorsal and ventral subdivisions of FST, J. Neurosci. 13: 534–546.PubMedGoogle Scholar
  71. Kaas, J. H., and Preuss, T. M., 1993, Archontan affinities as reflected in the visual system, in: Mammal Phylogenv ( F. Szalay, M. Novacek, and M. McKenna, eds.), Springer-Verlag, New York, pp. 115–128.Google Scholar
  72. Kaas, J. H.,, C.-S., and Wagor, E., 1977, Cortical projections of posterior parietal cortex in owl Monkeys, J. Comp. Neurol. 177: 387–408.Google Scholar
  73. Kaas, J. H., Krubitzer, L. A., and Johanson, K. I., 1989, Cortical connections of areas 17 (V-I) and 18 (V-II) of squirrels, J. Comp. Neural. 281: 426–446.Google Scholar
  74. Konorski, M. D., 1967, Integrative Activity of the Brain, University of Chicago Press, Chicago.Google Scholar
  75. Krubitzer, L. A., 1995, The organization of neocortex in mammals: Are species differences really so different? TINS 18: 408–417.PubMedGoogle Scholar
  76. Krubitzer, L. A., and Kaas, J. H., 1989, Cortical integration of parallel pathways in the visual system of primates, Brain Res. 478: 161–165.PubMedGoogle Scholar
  77. Krubitzer, L. A., and Kaas, J. H., 1990, Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns, Visual Neurosci. 5: 165–204.Google Scholar
  78. Krubitzer, L. A., and Kaas, J. H., 1993, The dorsomdeial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates, J Comp. Neurol. 334: 497–528.Google Scholar
  79. Kuypers, H. G. J. M., Szwarcbart, M. K., Mishkin, M., and Rosvold, H. E., 1965, Occipitotemporal corticocortical connections in the rhesus monkey, Exp. Neurol. 11: 245–262.PubMedGoogle Scholar
  80. Lashley, K. S., and Clark, G., 1946, The cytoarchitecture of the cerebral cortex of Aides: A critical examination of architectonic studies, J Comp. Neurol. 85: 223–305.Google Scholar
  81. LeGros Clark, W. E., 1952, A note on cortical cyto-architectonics, Brain 75: 96–104.Google Scholar
  82. Levitt, J. B., Yoshioka, T., and Lund, J. S., 1995, Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey, Exp. Brain Res. 104: 419–430.PubMedGoogle Scholar
  83. Lin, C.-S., Weller, R. E., and Kaas, J. H., 1982, Cortical connections of striate cortex in the owl monkey, J. Comp. Neurol. 211: 165–176.PubMedGoogle Scholar
  84. Livingstone, M. S., and Hubel, D. H., 1982, Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79: 6098–6101.PubMedGoogle Scholar
  85. Malonek, D., Tootell, R. B. H., and Grinvald, A., 1994, Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT, Proc. R. Soc. Conan. B 258: 109–119.Google Scholar
  86. Maguire, W. M., and Baiter, J. S., 1984, Visuotopic organization of the prelunate gyros in rhesus monkey, J. Neurosci. 4: 1690–1704.PubMedGoogle Scholar
  87. Martinez-Millân, L., and Holländer, H., 1975, Cortico-cortical projections front striate cortex of the squirrel monkey (Saimiri sciureus): A radioautographic study, Brain Res. 83: 405–417.PubMedGoogle Scholar
  88. Maunsell, J. H. R., and Van Essen, D. C., 1983, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey, J Neurosci. 3: 2563–2586.Google Scholar
  89. Maunsell, J. H. R., and Van Essen, D. C., 1987, Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries, J Comp. Neurol. 266: 535–555.Google Scholar
  90. Maunsell, J. H. R., Nealey, T. A., and DePriest, D. D., 1990, Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey, J Neuro-sci. 10: 3323–3334.Google Scholar
  91. McCulloch, W. S., 1944, Functional organization of cerebral cortex, Physiol. Rev. 24:390–407. Merigan, W. H., 1993, Hunan V4 ? Curr. Biol. 3: 226–229.Google Scholar
  92. Morel, A., and Bullier, J., 1990, Anatomical segregation of two cortical visual pathways in the macaque monkey, Visual Neurosci. 4: 555–578.Google Scholar
  93. Munk, H., 1890, Of the visual area of the cerebral cortex, and its relation to eye movements, Brain 13: 45–70.Google Scholar
  94. Myers, R. E., 1962, Commissural connections between occipital lobes of the monkey, J. Comp. Neurol. 118: 1–16.PubMedGoogle Scholar
  95. Myers, R. E., 1965, Organization of visual pathways, in: Functions of the Corpus Callosum ( E. G. Ettlinger, ed.), Churchill, London, p. 133.Google Scholar
  96. Neuenschwander, S., Gattas, S. R., Sousa, A. P. B., and Pinon, M. C. G. I., 1994, Identification and visuotopic organization of area PO and Pod in Cellos monkey, J Comp. Neurol. 340: 65–86.Google Scholar
  97. Newsome, W. T., and Allman, J. M., 1980, Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago seuegalensis, J. comp. Neurol. 194: 209–233.PubMedGoogle Scholar
  98. Newsome, W. T., Maunsell, J. H. R., and Van Essen, D. C., 1986, Ventral posterior visual area of the macaque: Visual topography and areal boundaries,. J Comp. Neurol. 252: 139–153.PubMedGoogle Scholar
  99. Northcutt, R. G., and Kaas, J. H., 1995, The emergence and evolution of mammalian neocortex. TINS 18: 373–379.PubMedGoogle Scholar
  100. Otsuka, R., and Hassler, R., 1962, On the construction and organization of the cortical visual region in the cat, Arch Psyclaiatr. Neurol. 203: 213–234.Google Scholar
  101. Pandya, D. N., and Seltzer, B., 1982, Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey, J. Comp. Neurol. 204: 196–210.PubMedGoogle Scholar
  102. Pessoa, V. F., Abrahao, J. C. H., Pacheco, R. A., Pereira, L. C. M., Magalhaes-Castro, B., and Saraiva, P. E. S., 1992, Relative sizes of cortical visual areas in marmosets: Functional and phylogenetic implications, Exp. Brain Res. 88: 459–462.PubMedGoogle Scholar
  103. Petersen, S. E., Miezen, F. M., and Allman, J. M., 1988, Transient and sustained responses in four extrastriate visual areas of the owl monkey, Exp. Brain Res. 70: 55–60.PubMedGoogle Scholar
  104. Preuss, T. M., Kaas, J. H., 1996, Cytochrome oxidase `blobs“ and other characteristics of primary visual cortex in a lemuriform primate, Cheriogaleus merlins, Brain Behay. Evol. 47: 103–112.Google Scholar
  105. Preuss, T. M., Beck, P. D., and Kaas, J. H., 1993, Areal, modular, and connectional organization of visual cortex in a prosimian primate, the slow loris (Nycticebus coucong), Brain Behay. Evol. 2: 237–251Google Scholar
  106. Previc, F. H., 1980, Functional specialization in the upper and lower visual fields in man: Origins and implications, Behay. Brain Sci. 13: 519–575.Google Scholar
  107. Purves, D., Riddle, I. R., and LaMantia, A. S., 1992, Iterated patterns of brain circuitry (or how the cortex gets its spots), TINS 15: 362–368.PubMedGoogle Scholar
  108. Ramón y Cajal, S., 1899, Comparative Study of the Sensory Areas of the Human Cortex, Clark Union Press, Worcester, MA, pp. 311–359.Google Scholar
  109. Reiner, A., 1993, Neurotransmitter organization and connections of turtle cortex: Implications for the evolution of mammalian isocortex, Comp. Biochem. Physiol. 104A: 735–748.Google Scholar
  110. Rockland, K. S., and Pandya, D. N., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179: 3–20.PubMedGoogle Scholar
  111. Roc, A. W., and Tso, D. Y., 1995, Visual topography in primate V2: Multiple representations across functional stripes, J. Nenrosci. 15: 3684–3715.Google Scholar
  112. Rosa, M. G. P., and Schmid, I. M., 1995, Visual areas in the dorsal and medial extrastriate cortices of the tnarmoset, J. Comp. Neurol. 359: 272–299.PubMedGoogle Scholar
  113. Rosa, M. G. P., Sousa, A. P. B., and Gattass, R., 1988, Representation of the visual field in the second visual area in the Cebus monkey, J. Comp. Neurol. 275: 326–345.PubMedGoogle Scholar
  114. Rosa, M. G. P., Soares, J. G. M., Florani, Jr., M., and Gattass, R., 1993, Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and Old World monkeys, Visual Neurosci. 10: 827–855.Google Scholar
  115. Rosa, M. G. P., Casagrande, V. A., Preuss, T., and Kaas, J. H., 1997, Visual field representation in striate and prestriate cortices of a prosimian primate (Galago garnetti), J. Neurophysiol. 77: 3193–3217.PubMedGoogle Scholar
  116. Rubin, N., Nakayama, K., and Shapley, R., 1996, Enhanced perception of illusory contours in the lower versus upper visual hemifields, Science 271: 651–653.PubMedGoogle Scholar
  117. Sanides, F., and Hoffman, J., 1969, Cyto-and myloarchitecture of the visual cortex of the cat and of the surrounding integration cortices, J. Hirn Jirrsch. 11: 79–104.Google Scholar
  118. Sereno, M. 1., and Allman, J. M., 1990, Cortical visual areas in mammals, in: The Neural Basis of Visual Function, Vol. 4 (A. G. Leventhal, ed.), Macmillan, London, pp. 16(1–172.Google Scholar
  119. Sereno, M. I., Pale, A. M., Reppas, J. B., Kwong, K. K., Belliveau, J. W., Brady, T. J., Rosen, B. R., and finch, R. B. H., 1995, Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging, Science 268: 889–893.PubMedGoogle Scholar
  120. Shipp, S., and Zeki, S., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.PubMedGoogle Scholar
  121. Shipp, S., Watson, J. D. G., Frackowiak, R. S. J., and Zeki, S., 1995, Retinotopic maps in human prestriate visual cortex: The demarcation of areas V2 and V3, Neuroimage 2: 125–132.PubMedGoogle Scholar
  122. Sholl, P. A., 1956, The Organization of the Cerebral Cortex, Methuen, London.Google Scholar
  123. Smith, G. E., 1906, A new topographic survey of human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci, J. Anat. Physiol. 42: 237–254.Google Scholar
  124. Sousa, A. P. B., Pinot, M. C. G. P., Gattass, R., and Rosa, M. G. P., 1991, Topographic organization of cortical input to striate cortex in the cebus monkey: A fluorescent tracer study, J. Comp. Neurol. 308: 665–682.PubMedGoogle Scholar
  125. Spatz, W. B., 1977, topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus, Exp. Brain Res. 27: 559–572.Google Scholar
  126. Spatz, W. B., and Tigges, J., 1972, Experimental-anatomical studies on the “middle temporal visual area (MT)” in primates. I. Efferent cortico-cortical connections in the marmoset, Callithrix jacchus, J. Comp. Neurol. 146: 451–464.PubMedGoogle Scholar
  127. Steele, G. E., Weller, R. E., and Cusick, C. G., 1991, Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys, J Comp. Neurol. 306: 495–520.Google Scholar
  128. Stepniewska, I., and Kaas, J. H., 1996, Topographic patterns of V2 cortical connections in macaque monkeys, J. Comp. Neurol. 371: 129–152.PubMedGoogle Scholar
  129. Sur, M., Wall, J. T., and Kaas, J. H., 1981, Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys, Science 212: 1059–1061.PubMedGoogle Scholar
  130. Symonds, L. L., and Kaas, J. H., 1978, Connections of striate cortex in the prosimian, Gahago senegalenrsis, J. Comp. Neurol. 181: 477–512.PubMedGoogle Scholar
  131. Talbot, S. A., and Marshall, W. H., 1941, Physiological studies on neural mechanisms of visual localization and discrimination, Am. J. Ophthalmol. 24: 1255–1264.Google Scholar
  132. Tanaka, J., Lindsey, E., Lausmann, S., and Creutzfeldt, O. D., 1990, Afferent connections of the prelunate visual association cortex (areas V4 and DP), Anat. Embryol. 181: 19–30.PubMedGoogle Scholar
  133. Tigges, J., Spatz, W. B., and Tigges, M., 1974, Efferent cortico-cortical fiber connections of area 18 in the squirrel monkey (Saimiri), J. Comp. Neurol. 158: 219–236.PubMedGoogle Scholar
  134. Tigges, J., Tigges, M., Anschel, S., Cross, N. A., Letbetter, W. D., and McBride, R. L, 1981, Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, I8, 19 and MT in squirrel monkey (Saimiri), J. Camp. Neurol. 202: 539–560.Google Scholar
  135. Tootell, R. B. H., and Taylor, J. B., 1995, Anatomical evidence for Ml and additional cortical visual areas in humans, Cerebral Cortex 1: 39–55.Google Scholar
  136. Motel, R. B. H., Silverman, M. S., DeValois, R. L., and Jacobs, G. H., 1983, Functional organization of the second cortical area of primates, Science 220: 737–739.Google Scholar
  137. Tootell, R. B. H., Hamilton, S. L., and Silverman, M. S., 1985, Topography of cytochrome oxidase activity in owl monkey cortex, J Neurosci. 5: 2786–2800.Google Scholar
  138. Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, L. J., Rosen, B. R., andBelliveau, J. W., 1995, Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging, J. Neurosci. 15: 3215–3230.Google Scholar
  139. Ungerleider, L. G., and Desimone, R., 1986a, Projections to the superior temporal sulcus from the central and peripheral field representations of V I and V2, J. Comp. Neurol. 248: 147–163.PubMedGoogle Scholar
  140. Ungerleider, L. G., and Desimone, R., 19866, Cortical projections of visual area MT in the macaque, J. Comp. Neural. 248: 190–222.Google Scholar
  141. Ungerleider, L. G., and Haxby, J. V., 1994, “What” and “where” in the human brain, Cuir. Opin. Ne urobiol. 4:157–165.Google Scholar
  142. Ungerleider, L. G., and Mishkin, M., 1979, The striate projection zone in the superior temporal of Macaca mulatta. Location and topographic organization, J. Comp. Neural. 188: 347–366.Google Scholar
  143. Underleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in: Analysis of Visual Behavior ( I. J. Ingle, M. A. Goodale, and R. L. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 544–586.Google Scholar
  144. Van Essen, D. C., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex, Vol. 3, Visual Cortex ( A. Peters and E. G. Jones, eds.) Plenum Press, New York, pp. 259–329.Google Scholar
  145. Van Essen, D. C., and Maunsell, J. H. R., 1983, Hierarchical organization and the functional streams in the visual cortex, TINS 6: 370–375.Google Scholar
  146. Van Essen, I. C., and Zeki, S. M., 1978, The topographical organization of rhesus monkey prestriate cortex, J. Physiol. 277: 193–226.PubMedGoogle Scholar
  147. Van Essen, D. C., Maunsell, J. H. R., and Bixby, J. L., 1981, The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization, J. Comp. Neurol. 199: 293–326.PubMedGoogle Scholar
  148. Van Essen, I. C., Newsome, W. F., Maunsell, J. H. R., and Bixby, J. L., 1986, The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: Asymmetries, areal boundaries and patchy connections, J. Comp. Neural. 244: 451–480.Google Scholar
  149. Von Economo, C., 1929, The Cytoarchitectonics of the Human Cortex, Oxford University Press, Oxford.Google Scholar
  150. Wagor, E.,, C.-S., and Kaas, J. H., 1975, Some cortical projections of the dorsomedial visual area (DM) of association cortex in the owl monkey (Aotus trivirgatus), J. Comp. Neural. 163: 227–250.Google Scholar
  151. Walker, A. E., 1938, The Primate Thalamus, University of Chicago Press, Chicago.Google Scholar
  152. Weller, R. E., 1988, “Iwo cortical visual systems in Old and New World primates, Prog. Bruin Res. 75: 293–306.Google Scholar
  153. Weller, R. E., and Kaas, J. IL, 1983, Retinotopic patterns of connections of area 17 with visual areas V-11 and MT in macaque monkeys, J. Comp. Neurol. 220: 253–279.Google Scholar
  154. Weller, R. E., and Kaas, J. IL, 1985, Cortical projections of the dorsolateral visual area in owl monkeys: The prestriate relay to inferior temporal cortex, J Comp. Neurol. 234: 35–59.Google Scholar
  155. Weller, R. E., and Kaas, J. H., 1987, Subdivisions and connections of inferior temporal cortex in owl monkeys, J. Comp. Neurol. 256: 137–172.PubMedGoogle Scholar
  156. Weller, R. E., and Steele, G. E., 1992, Cortical connections of subdivisions of inferior temporal cortex in squirrel monkeys, J Comp. Neurol. 324: 37–66.Google Scholar
  157. Weller, R. E., Wall, J. l., and Kaas, J. H., 1984, Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys, J. Comp. Neural. 228: 81–104.Google Scholar
  158. Weller, R. E., Steele, G. E., and Cusick, C. G., 1991, Cortical connections of dorsal cortex rostra! To VII in squirrel monkeys, J. Comp. Neurol. 306: 521–537.PubMedGoogle Scholar
  159. Wong-Riley, M. I., 1979, Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys, Brain Res. 162: 201–207.PubMedGoogle Scholar
  160. Wong-Riley, M. I. T., Hevuer, R. F., Cuttan, R., Earnest, M., Egan, R., Frost, J., and Ngugen, 1993, Cytochrome oxidase in the human visual cortex: Distribution in the developing and adult brain, Visual Neurosci. 10: 41–58.Google Scholar
  161. Woolsey, C. N., and Fairman, D., 1946, Contralateral, ipsilateral, and bilateral representations of cutaneous receptors in somatic areas I and 11 of the cerebral cortex of pig, sheep, and other mammals, Surgery 19: 684–702.PubMedGoogle Scholar
  162. Young, M. P., Scannell, J. W., and Burns, G., 1995, The Analysis of Cortical Connectivity, Landes, Austin, TX.Google Scholar
  163. Zeki, S. M., 1969, Representation of central visual fields in prestriate cortex of monkey, Bran Res. 14: 271–291.Google Scholar
  164. Zeki, S. M., 197la, Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey, Brain Res. 29: 338–340.Google Scholar
  165. Zeki, S. M., 197 lb, Cortical projections from two prestriate areas in the monkey, Brain Res. 34: 19–35.Google Scholar
  166. Zeki, S. M., 1971e, Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus of the monkey, Brain Res. 35: 528–532.PubMedGoogle Scholar
  167. Zeki, S. M., 1973, Colour coding in rhesus monkey prestriate cortex, Brain Res. 53: 422–427.PubMedGoogle Scholar
  168. Zeki, S. M., 1977, Simultaneous anatomical demonstration of the representations of the vertical and horizontal meridians in areas V2 and V3 of rhesus monkey visual cortex, Proc. R. Soc. Land. B 195: 517–523.Google Scholar
  169. Zeki, S. M., 1978, The third visual complex of rhesus monkey prestriate cortex, J Physiol. 277: 245–272.PubMedGoogle Scholar
  170. Zeki, S., 1980, The response properties of cells in the middle temporal area (area MT) of owl monkey visual cortex, Proc. R. Soc. Land. B 207: 239–248.Google Scholar
  171. Zeki, S., Watson, J. P. G., I.ueck, C. I., Friston, K., Kennard, C., and Frackowjak, R. S. J., 1991, A direct demonstration of functional specialization in human visual cortex, J Neurosci. 11: 641–649.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Jon H. Kaas
    • 1
  1. 1.Department of PsychologyVanderbilt UniversityNashvilleUSA

Personalised recommendations