Past and Present Ideas About How the Visual Scene Is Analyzed by the Brain

  • Peter H. Schiller
Part of the Cerebral Cortex book series (CECO, volume 12)


The dominant view during the past 40 years has been that the visual system analyzes the visual scene by breaking it down into basic attributes such as color, form, motion, depth, and texture. It was proposed that individual, dedicated neurons and specific visual areas are devoted to the analysis of each of these attributes. Current research has challenged these views by emphasizing that neurons, especially in the cortex, have multifunctional properties and therefore serve as general-purpose analyzers rather than feature detectors. Consequently it appears that most extrastriate visual areas, rather than each being devoted to the analysis of a specific basic visual attribute, perform several different tasks and thereby engage in more advanced and complex analyses than had been realized.


Ganglion Cell Visual Cortex Receptive Field Retinal Ganglion Cell Bipolar Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albright, F. D., 1984, Direction and orientation selectivity of neurons in visual area MT of the macaque, J. Neurophysiol. 48: 338–351.Google Scholar
  2. Albright, T. D., Desimone, R., and Gross, C. G., 1984, Columnar organization of directionally selective cells in visual area MT of the macaque, J. Neurophysiol. 51: 16–31.PubMedGoogle Scholar
  3. Barlow, H. B., 1953, Summation and inhibition in the frogs retina, J. Physiol. (Lond.) 119: 69–88.Google Scholar
  4. Barlow, H. B., 1972, Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1: 371–395.CrossRefPubMedGoogle Scholar
  5. Blasdel, G. G., 1992a, Orientation selectivity, preference, and continuity in monkey striate cortex, J Neurosci. 12: 3139–3161.Google Scholar
  6. Blasdel, G. G., 1992b, Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex, J. Neurosci. 12: 3115–3138.Google Scholar
  7. Brodmann, K. 1909, Vergleichende Lokalisatio7slehre der Grosshirnrinde, Barth, Leipzig.Google Scholar
  8. Desimone, R., and Schein, J., 1987, Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form, J. Neurophysiol. 57: 835–868.PubMedGoogle Scholar
  9. De Valois, R. L., and De Valois, K. K., 1980, Spatial vision, Annu. Rev. Psychol. 31: 309–341.CrossRefGoogle Scholar
  10. De Yoe, E. A., and Van Essen, D. C., 1988, Concurrent processing streams in monkey visual cortex, Trends Neurosci. 11: 219–226.CrossRefGoogle Scholar
  11. Duffy, C. J., and Wurtz, R. H., 1991, Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli, J. Neurophysiol. 65: 1329–1345.PubMedGoogle Scholar
  12. Enroth-Cugell, C., and Robson, J. G., 1966, The contrast sensitivity of retinal ganglion cells of the cat, J. Physiol. (Loud.) 18: 517–552.Google Scholar
  13. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchical processing in the primate cerebral cortex, Cerebral Cortex 1:1–47 (1991.Google Scholar
  14. Ferrera, V. P., Nealy, T. A., and Maunsell, J. H. R., 1992, Mixed parvocellular and magnocellular geniculate signals in visual area V4, Nature 358: 756–758.CrossRefPubMedGoogle Scholar
  15. Gall, F. J., and Spurzheim, G., 1989, Research on the nervous system in general and on that of the brain in particular, in: Brain and Behavior ( K. H. Pribram, ed.), Penguin, Middlesex, U.K., pp. 20–26.Google Scholar
  16. Glickstein, M. E., 1985, Ferriers mistake, Trends Neurosci. 8: 341–344.CrossRefGoogle Scholar
  17. Gross, C. G., 1973, Inferotemporal cortex and vision, in: Progress in Physiological Psychology, Vol. 5 ( E. Stellar and J. M. Sprague, eds.), Academic Press, New York, pp. 77–123.Google Scholar
  18. Haenny, P. E., and Schiller, P. H., 1988, State dependent activity in monkey visual cortex. I. Single cell activity in VI and V4 on visual tasks, Exp. Brain Res. 69: 225–244.CrossRefPubMedGoogle Scholar
  19. Haenny, P. E., Maunsell, J. H. R., and Schiller, P. H., 1988, State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4, Exp. Brain Res. 69: 245–259.CrossRefPubMedGoogle Scholar
  20. Hartline, H. K., 1938, The responses of single optic nerve fibers of the vertebrate eye to illumination of the retina, Am. J. Physiol. 121: 400–415.Google Scholar
  21. Head, H., 1926, Aphasia and Kindred Disorders of Speech, Macmillan, New York.Google Scholar
  22. Hebb, D. O., 1949, The Organization of Behavior, Wiley, New York.Google Scholar
  23. Helmholtz, H., 1924, Physiological Optics (J. P. C. Southall, ed.), Optical Society of America, Rochester, New York.Google Scholar
  24. Hendry, S. H. C., and Yoshioka, T., 1994, A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus, Science 264: 575–577.CrossRefPubMedGoogle Scholar
  25. Heywood, C. A., and Cowey, A., 1987, On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys, J. Neurosci. 7: 2601–2617.PubMedGoogle Scholar
  26. Heywood, C. A., Gadotti, A., and Cowey, A., 1992, Cortical area V4 and its role in the perception of color, J. Neurosci. 12: 4056–4065.PubMedGoogle Scholar
  27. Hodges, A., 1983, Alan Turing: The Enigma, Simon amp; Schuster, New York.Google Scholar
  28. Horton, J. C., and Hubel, D. H., 1980, Cytochrome oxidase stain preferentially labels intersection of ocular dominance and vertical orientation columns in macaque striate cortex, Soc. Neurosci. Abstr. 6: 315.Google Scholar
  29. Hubel, D. H., and Wiesel, T. N., 1959, Receptive fields of single neurones in the cats striate cortex, J. Physiol. (Lond.) 148: 574–591.Google Scholar
  30. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cats visual cortex, J. Physiol. (Lond.) 160: 106–154.Google Scholar
  31. Hobel, D. H., and Wiesel, T. N., 1968, Receptive fields and functional architecture of monkey striate cortex, J. Physiol. (Loud.) 195: 215–243.Google Scholar
  32. Hubel, D. H., and Wiesel, T. N., 1969, Anatomical demonstration of columns in the monkey striate cortex, Nature 225: 41–42.CrossRefGoogle Scholar
  33. Hubel, D. H., and Wiesel, T. N., 1970, Cells sensitive to binocular depth in area 18 of the macaque cortex, Nature 225: 41–42.CrossRefPubMedGoogle Scholar
  34. Hubel, D. H., and Wiesel, T. N., 1972, Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey, J. Comp. Neurol. 158: 267–294.CrossRefGoogle Scholar
  35. Hubel, D. H., and Wiesel, T. N., 1977, Functional architecture of macaque visual cortex, Proc. R. Soc. B 198: 1–59.CrossRefGoogle Scholar
  36. Jung, R., 1961, Korrelationen von Neuronentatigkeit und Sehen, in: Neurophysiologie und Psychophysik des visuellen Systems ( R. Jung and H. H. Kornhuber, eds.), Springer-Verlag, New York, pp. 410–435.CrossRefGoogle Scholar
  37. Kaas, J. H., 1978, The organization of visual cortex in primates, in: Sensory Systems of Primates ( C. Noback, ed.), Plenum Press, New York, pp. 151–179.CrossRefGoogle Scholar
  38. Kaas, J. H., 1982, The segregation of function in the nervous system: Why do sensory systems have so many subdivisions? in: Contributions to Sensory Physiology, Vol. 7 ( W. D. Neef, ed.), Academic Press, New York, 1982, pp. 201–240.Google Scholar
  39. Kluver, H., 1927, Visual disturbances after cerebral lesions, Psychol. Bull. 24:316–358. Lashley, K. S., 1963, Brain Mechanisms and Intelligence, Dover, New York.Google Scholar
  40. Lennie, P., 1984, Recent developments in the physiology of color vision, Trends Neurosci. 7: 243–248.CrossRefGoogle Scholar
  41. Lettvin, J. Y., Maturana, W. S., McCullogh, W. S., and Pitts, W. H., 1959, What the frogs eye tells the frogs brain, Proc. Inst. Radio. Eng. 47: 1940–1951.Google Scholar
  42. Leventhal, A. G., Thompson, K. G., Liu, D., Zhou, Y., and Ault, S. J., 1995, Concomitant sensitivity to orientation, direction and color of cells in layers 2, 3, and 4 of monkey striate cortex, J. Neurosci. 15: 1808–1818.PubMedGoogle Scholar
  43. Levitt, J. B., Kiper, D. C., and Movshon, J. A., 1994, Receptive fields and functional architecture of macaque V2, J. Neurophysiol. 71: 2517–2542.PubMedGoogle Scholar
  44. Livingstone, M. S., and Hubel, D. H., 1984, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  45. Livingstone, M. S., and Ilubel, D. H., 1987, Psychophysical evidence for separate channels for the perception of form, color, movement, and stereopsis, J. Neurosci. 7: 3416–3468.PubMedGoogle Scholar
  46. Livingstone, M. S., and Hubel, D. H., 1988, Segregation of form, color, movement, and depth: Anatomy, physiology, and perception, Science 240: 740–749.CrossRefPubMedGoogle Scholar
  47. Lund, J. S., 1988, Anatomical organization of macaque monkey striate visual cortex, Anno. Rev. Neurosci. 11: 253–288.CrossRefGoogle Scholar
  48. Malpeli, J. G., Schiller, P. H., and Colby, C. 1.., 1981, Response properties of single cells in monkey striate cortex (luring reversible inactivation of individual geniculate laminae, J. Neurophysiol. 49: 1102–1119.Google Scholar
  49. Maturana,_J. R., Leavitt, J. Y., McCullogh, W. S., and Pitts, W. H., 1960, Anatomy and physiology of vision in the frog (Rasa. Jijiiens), J. Gen. Physiol. 43: 129–175.Google Scholar
  50. Maunsell, J. H. R., Nealey, T. A., and De Priest, I. I., 1990, Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey, J. Neurose,. 10: 3323–3334.Google Scholar
  51. McClurkin, J. W., Zarbock, J. A., and Opticati, L. M., 1994, Temporal codes for colors, patterns and memories, in: Cerebral Cortex, Vol. 10, Primary Visual Cortex in lrirnates ( A. Peters and K. S. Rockland, eds.), Plenum Press, New York.Google Scholar
  52. Mcllwain, J. 1., 1966, Some evidence concerning the physiological bases of the periphery effect in the cats retina, Exp. Brain Res. 1: 265–271.Google Scholar
  53. Meadows, J. C., 1974, Distributed perception of colours associated with localized cerebral lesions, Brain 97: 615–632.CrossRefPubMedGoogle Scholar
  54. Merzenich, M. M., and Sameshima, K., 1993, Cortical plasticity and memory, Curr. O J,n. Neurolnol. 3: 187–196.CrossRefGoogle Scholar
  55. Moran, J., and Desimone, R., 1985, Selective attention gates visual processing in the extrastriate cortex, Science 229: 782–784.CrossRefPubMedGoogle Scholar
  56. Nelson, R., Famiglietti, E., and Kolb, H., 1978, Intracellular staining reveals different levels of stratification for On-and Off-center ganglion cells in the cat retina, J. Neurophysiol. 41: 472–483.PubMedGoogle Scholar
  57. Newsome, W. F., and Wurtz, R. H., 1988, Probing visual cortical function with discrete chemical lesions, Trends Neurosci. 11: 394–400.Google Scholar
  58. Poggio, G., 1972, Spatial properties of neurons in striate cortex of unanesthetized macaque monkey, Invest. O Jshthalrnol. 11: 368–377.Google Scholar
  59. Poggio, G. F., and Poggio, F., 1984, The analysis of sl.ereopsis, Anvil. Rev. Neurosci. 7: 379–412.CrossRefGoogle Scholar
  60. Purves, I., Riddle, R. R., and La Manda, A. S., 1992, Iterated patterns of brain circuitry (or how the cortex gets its spots), Trends Neurosci. 15: 362–368.CrossRefPubMedGoogle Scholar
  61. Ramon y Cajal, S., 1989, Recollections of My Lips, (E. Horne Craigie, trans.), MLF Press, Cambridge, MA.Google Scholar
  62. Roy, J.P. and Wurtz, R. H., 1990, The role of disparity-sensitive cortical neurons in signalling the direction of self-motion, Nature 348: 160–162.CrossRefPubMedGoogle Scholar
  63. Schein, S. J., and Desimone, R., 1990, Spectral properties of V4 neurons on the macaque, J. Neurosci. 10: 3369–3389.PubMedGoogle Scholar
  64. Schiller, P. H., 1982, Central connections of the retinal On and Off pathways, Nature 297: 580–583.CrossRefPubMedGoogle Scholar
  65. Schiller, P. H., 1986, Fie central visual system, Vision Res. 26: 1351–1386.Google Scholar
  66. Schiller, P. If., 1993, The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey, Visual Neurosci. 10: 717–746.CrossRefGoogle Scholar
  67. Schiller, P. H., 1994, Area V4 of the primate visual cortex, Curr. Dir. 3: 89–92.CrossRefGoogle Scholar
  68. Schiller, I. H., 1995, Fhe ON and OFF channels of the mammalian visual system, in: Retinal and Eye Research, Vol. 15, No. 1 ( N. N. Osborne and G. J. Charier, eels.), Pergamon Press, Elsevier Science Inc., New York.Google Scholar
  69. Schiller, P. H., and Lee, K., 1991, The role of the primate extrastriate area V4 in vision, Science 251: 1251–1253.CrossRefPubMedGoogle Scholar
  70. Schiller, P. IL, and Logothetis, N. K., 1990, Elie color-opponent and broad-band channels of the primate visual system, Trends Neurosci. 13: 392–398.Google Scholar
  71. Schiller, P. H., and Malpeli, J., 1977, The properties and tectal projections of monkey retinal ganglion cells, J Neurophysiol. 40: 428–445.Google Scholar
  72. Schiller, P. H., Finlay, B., and Volman, S., 1976, Quantitative studies of single-cell properties in monkey striate cortex, J. Neurophysiol. 39: 1288–1374.PubMedGoogle Scholar
  73. Schiller, P. H., Logothetis, N. K., and Charles, E. R., 1990, Role of color-opponent and broad-band channels in vision, Visual Neurosci. 5: 321–346.CrossRefGoogle Scholar
  74. Schwartz, E. I.., 1994, Computational studies of the spatial architecture of primate visual cortex: Columns, maps, and protomaps, in: Cerebral Cortex, Vol. 10, Primary Visual Cortex in Primates ( A. Peters and K. S. Rockland, eds.), Plenum Press, New York.Google Scholar
  75. Simpson, J. I., 1984, Ehe accessory optic system, Annu. Rev. Neurosci. 7: 13–41.Google Scholar
  76. Slaughter, M. M., and Miller, R. F., 1981, 2-Amino-4-phosphonobutyric acid: A new pharmacological tool for retina research, Science 211: 182–184.Google Scholar
  77. Stone, J., 1983, Parallel Processing in the Visual System, Plenum Press, New York.CrossRefGoogle Scholar
  78. Swindale, N. V., 1990, Is the cerebral cortex modular? Trends Neurosci. 13: 487–492.CrossRefPubMedGoogle Scholar
  79. Talbot, S. A., and Marshall, W. H., 1941, Physiological studies on neural mechanisms of visual localization and discrimination, Am J. Ophthalmol. 24: 1255–1264.Google Scholar
  80. Ungerleider, L. G., and Mishkin, M., 1982, Two cortical visual systems, in: Analysis of Visual Behavior (D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield, eds.), MIT Press, Cambridge, MA, pp. 549–586.Google Scholar
  81. Waessle, H., and Boycott, B. B., 1991, Functional architecture of the mammalian retina, Physiol. Rev. 71: 447–479.Google Scholar
  82. Werblin, F. S., and Dowling, J. E., 1969, Organization of the retina of the mudpuppy, Nee torus maculosus. 11. Intracellular recording, J. Neurophysiol. 32: 339–355.PubMedGoogle Scholar
  83. Wiesel, T. N., and Hubel, D. H., 1966, Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey, J Neurophysiol. 29: 1115–1156.Google Scholar
  84. Wild, H. M., Butler, S. R., Carden, D. J., and Kulikowski, J. J., 1985, Primate cortical area V4 important for color constancy but not wavelength discrimination, Nature 313: 133–135.CrossRefGoogle Scholar
  85. Wong-Riley, M. “E. T., Merzenich, M. M., and Leake, P. A., 1978, Changes in endogenous enzymatic activity to DAB induced by neuronal inactivity, Brain Res. 141: 185–192.Google Scholar
  86. Zeki, S. M., 1973, Colour coding in rhesus monkey prestriate cortex, Brain Res. 53: 422–427.CrossRefPubMedGoogle Scholar
  87. Zeki, S. M., 1974, Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey, J Physiol. (Lond.) 236: 549–573.Google Scholar
  88. Zeki, S. M., 1990, A century of cerebral achromatopsia, Brain 113: 1721–1777.CrossRefPubMedGoogle Scholar
  89. Zipser, K., Lee, T.-S., Lamme, V. A. F., and Schiller, P. H., 1994, Spatial extent of VI extra-RF mechanisms in macaque, Soc. Neurosci. Abstr. 20: 1477.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Peter H. Schiller
    • 1
  1. 1.Department of Brain and Cognitive SciencesMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations