Advertisement

The Color and Motion Systems as Guides to Conscious Visual Perception

Part of the Cerebral Cortex book series (CECO, volume 12)

Abstract

Is there one overall consciousness or are there many? Does each system have its own mechanism for conscious experience or is consciousness suprasystemic? Can each of the many visual areas that constitute the primate visual brain contribute directly to conscious experience, without the necessity for pre- or postprocessing by other visual areas, and especially by the primary visual cortex (area V 1)? Such questions may have been asked before, but, with the discovery of functional specialization in the primate visual cortex (Zeki, 1974b, 1978a; Livingstone and Hubel, 1984a), they have become mandatory. In any case, there never has been a more propitious time for addressing them experimentally than the present. In this chapter, I do so with reference to the visual motion and color systems.

Keywords

Visual Cortex Visual Area Striate Cortex Superior Temporal Sulcus Positron Emission Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, J. M., and Kaas, J. H., 1971, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatur), Brain Res. 31: 85–105.PubMedGoogle Scholar
  2. Baker, C. I.., Hess, R. H., and Zihl, J., 1991, Residual motion perception in a “motion-blind” patient, assessed with limited lifetime random dots,,. Neurosci. 11: 454–461.Google Scholar
  3. Barbur, J. L., Watson, J. D. G., Frackowiak, R. S. J., and Zeki, S., 1993, Conscious visual perception without. VI, Brain 116: 1293–1302.PubMedGoogle Scholar
  4. Beckers, G., and Hiimberg, V., 1992, Cerebral visual motion blindness: Transitory akinetopsia induced by transcranial magnetic stimulation of human area V5, Proc. R. Soc. Lond. B 249: 173–178.Google Scholar
  5. Beckers, G., and Zeki, S., 1995,’1 he consequences of inactivating areas V1 and V5 on visual motion perception, Brain 118: 49–60.Google Scholar
  6. Bender, M. B., and Feldman, M., 1972, The so-called `visual agnosias’, Brain 95: 173–186.PubMedGoogle Scholar
  7. Benevento, L. A., and Rezak, M., 1976, The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): an autoradiographic study, Brain Res. 108: 1–24.PubMedGoogle Scholar
  8. Benson, D. F., and Greenberg, J. P., 1969, Visual form agnosia: A specific defect in visual discrimination, Arch. Neural. Psychiatry (Chicago) 20: 82–89.Google Scholar
  9. Blasdel, G. G., and Fitzpatrick D., 1984, Physiological organization of layer 4 in macaque striate cortex,]. Neurosci. 4: 880–895.Google Scholar
  10. Blythe, I. M., Kennard, C., and Ruddock, K. H., 1987, Residual vision in patients with retrogeniculate lesions of the visual pathways, Brain 110: 887–905.PubMedGoogle Scholar
  11. Boussaoud, D., Desimone, R., and Ungerleider, L. G., 1991, Visual topography of area TE() in the macaque, J. Comp. Neurol. 306: 554–575.PubMedGoogle Scholar
  12. Burkhalter, A., Felleman, D. J., Newsome, W. T., and Van Essen, D. C., 1986, Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex, Vision Res. 26: 63–80.PubMedGoogle Scholar
  13. Burkhalter, A., and Van Essen, D. C., 1986, Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey,/ Neurosci. 6: 2237–2351.Google Scholar
  14. Campion, J., Latto, R., and Smith, Y. M., 1983, Is blindsight an effect of scattered light, spared cortex, and near-threshold vision? Behan. Brain Sci. 6: 423–486.Google Scholar
  15. Ceccaldi, M., Mestre, D., Brouchon, M., Balzamo, M., and Poncet, M., 1992, Autonomie deambulatoire et perception visuelle du mouvements dans un cas de cécité corticale quasi totale, Rev. Neurol. 148: 343–349.PubMedGoogle Scholar
  16. Celesia, G. G., Bushnell, D., ‘Foleikis, S. C., and Brigell, M. G., 1991, Cortical blindness and residual vision: Is the `second’ visual system in humans capable of more than rudimentary visual perception? Neurology 41: 862–869.Google Scholar
  17. Clarke, S., and Miklossy, J., 1990, Occipital cortex in man: Organization of callosal connections, related myelo-and cytoarchitecture, and putative boundaries of functional visual areas,/ Comp. Neurol. 298: 188–214.Google Scholar
  18. Corbetta, M., Miezin, F., Dobmeyer, S., Shulman, G. L., and Petersen, S. E., 1991, Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography, J. Neurosci. 11: 2383–2402.PubMedGoogle Scholar
  19. Cowey, A., and Stoerig, P., 1991, The neurobiology of blindsight, Trends Neurosci. 14:140–145. Cragg, B. G., 1969, The topography of the afferent projections in circumstriate visual cortex studied by the Nauta method, Vision Res. 9: 733–747.Google Scholar
  20. Crick, F., and Koch, C., 1995, Are we aware of neural activity in primary visual cortex? Nature 375: 121–123.PubMedGoogle Scholar
  21. Damasio, A., Yamada, T., Damasio, H., Corbett, J., and McKee, J., 1980, Central achromatopsia: Behavioural, anatomic, and physiologic aspects, Neurology 30: 1064–1071.PubMedGoogle Scholar
  22. De Jong, B. M., Shipp, S., Skidmore, B., Frackowiak, R. S. J., and Zeki, S., 1994, he cerebral activity related to the visual perception of forward notion in depth, Brain 117: 1039–1054.Google Scholar
  23. Desimone, R., and Schein, S. J., 1987, Visual properties of neurons in area V4 of the macaque: Sensitivity to stimulus form, J. Neurophysiol. 57: 835–867.PubMedGoogle Scholar
  24. Desimone, R., and Ungerleider, L. G., 1986, Multiple visual areas in the caudal superior temporal sulcus of the macaque, J. Comp. Neurol. 248: 164–189.PubMedGoogle Scholar
  25. DeYoe, L, A., and Van Essen, D. C., 1985, Segregation of efferent connections and receptive field properties in visual area 2 of the macaque, Nature 317: 58–61.Google Scholar
  26. Dow, B. M., 1974, Functional classes of cells and their laminar distribution in monkey visual cortex, J. Neurophysiol. 37: 927–946.PubMedGoogle Scholar
  27. Drasdo, N., Edwards, L., and ‘Thompson, 1)., 1993, Models of the visual cortex based on visual evoked potentials, in: Functional Organisation of Human Visual Cortex ( B. Gulyas, D. Ottoson, and P. Roland, eds.), Pergamon Press, Oxford, pp. 255–269.Google Scholar
  28. Dubner, R., and Zeki, S. M., 1971, Response properties and receptive fields in an anatomically defined region of the superior temporal sulcus in the monkey, Brain Res. 35: 528–532.PubMedGoogle Scholar
  29. Ducati, A., Fava, E., and Motti, E. D. F., 1988, Neuronal generators of the visual evoked potentials: Intracerebral recording in awake humans, Flectroeneeph. Clin. Neurophysiol. 71: 89–99.Google Scholar
  30. Dupont, P., Orban, G. A., De Bruyn, B., Verbruggen, A., and Mortelmans, L., 1994, Many areas in the human brain respond to visual motion, J. Neurophysiol. 72: 1420–1424.PubMedGoogle Scholar
  31. Fendrich, R., Wessinger, C. M., and Gazzaniga, M. S., 1992, Residual vision in a scotoma: Implications for blindsight, Science 258: 1489–1491.Google Scholar
  32. ffytche, D., Guy, C. N., and Zeki, S., 1995, The parallel visual motion inputs into areas VI and V5 of human cerebral cortex, Brain 118: 1375–1394.PubMedGoogle Scholar
  33. Finkel, L. H., and Edelman, G. M., 1989, Integration of distributed cortical systems by reentry: A computer simulation of interactive functionally segregated visual areas, J. Neurosci. 9: 3188–3208.PubMedGoogle Scholar
  34. Fries, W., 1981, The projection from the lateral geniculate nucleus to the prestriate cortex of the macaque monkey, Proc. R. Soc. Lund. B 213: 73–80.Google Scholar
  35. Girard, P., Salin, P. A., and Bullier, J., 1992, Response selectivity of neurons in area MT of the macaque monkey during reversible inactivation of area V1, Neurophysiol 67: 1437–1446.Google Scholar
  36. Hawken, M. J., Parker, A. J., and Lund, J. S., 1988, Laminar organization and contrast selectivity of direction selective cells in the striate cortex of the Old-World monkey,/ Neurosci. 8: 3541–3548.Google Scholar
  37. Henaff, M. A., and Michel, F., 1993, A case of central achromatopsia: Possible implicit treatment of hue, Invest. Ophthalmol. Vis. Sci. 34: 745.Google Scholar
  38. Hendry, S. H. C., and Yoshioka, T., 1994, A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus, Science 264: 575–577.PubMedGoogle Scholar
  39. Henschen, S. E., 1910, Zentrale Sehstörungen, in: Handbuch der Neurologie ( M. Lewandowsky, eds.), Springer, Berlin, pp. 891–918.Google Scholar
  40. Hess, R. H., Baker, C. L., and Zihl, J., 1989, The “motion-blind” patient: Low level spatial and temporal filters, J. Neurosci. 9: 1628–1640.PubMedGoogle Scholar
  41. Heywood, C. A., Wilson, B., and Cowey, A., 1987, A case study of cortical colour `blindness’ with relatively intact achromatic discrimination, J. Neural. Neurosurg. Psychiatry 50: 22–29.Google Scholar
  42. Holmes, G., 1945, The Ferrier Lecture: The organization of the visual cortex in man, Proc. R. Soc. Lond. B 132: 348–361.Google Scholar
  43. Rubel, D. H., and Livingstone, M. S., 1987, Segregation of form, color and stereopsis in primate area 18, J. Neurosci. 7: 3378–3415.Google Scholar
  44. Hubel, D. H., and Wiesel, T. N., 1962, Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,/ Physiol. (Lond.) 160: 106–154.Google Scholar
  45. Hubel, D. H., and Wiesel, T. N., 1977, Ferrier Lecture. Functional architecture of macaque monkey visual cortex, Proc. R. Soc. Load. B 198: 1–59.Google Scholar
  46. Humphrey, G. K., Goodale, M. A., Corbetta, M., and Aglioti, S., 1995, The McCullough effect reveals orientation discrimination in a case of cortical blindness, Curr. Biol. 5: 545–551.PubMedGoogle Scholar
  47. Humphreys, G. W., and Riddoch, J. M., 1987, To See But Not to See: A Case Study of Visual Agnosia, Erlbaum, Hillsdale, NJ.Google Scholar
  48. Kawano, K., Shidara, M., Watanabe, Y., and Yamane, S., 1994, Neural activity in cortical area MST of alert monkey during ocular following responses, J. Neurophysiol. 71: 2305–2324.PubMedGoogle Scholar
  49. Keating, E. G., 1980, Residual spatial vision in the monkey after removal of striate and preoccipital cortex, Brain Res. 187: 271–290.PubMedGoogle Scholar
  50. Kennard, C., Lawden, M., Moreland, A. B., and Ruddock, K. H., 1995, Colour identification and colour constancy are impaired in a patient with incomplete achromatopsia associated with pre-striate cortical lesions, Proc. R. Soc. Lond. B 260: 169–175.Google Scholar
  51. Kertesz, A., 1979, Visual agnosia: ‘fhe dual deficit of perception and recognition, Cortex 15: 403–419.PubMedGoogle Scholar
  52. Kölmel, H. W., 1988, Pure homonymous hemiachromatopsia: Findings with neuroopthalmolgic examination and imaging procedures, Eur. Arch. Psychiatr. Neurol. Sci. 237: 237–243.Google Scholar
  53. Krubitzer, L. A., and Kaas, J. H., 1990, Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns, Visual Neurosci. 5: 165–204.Google Scholar
  54. Kulikowski, J. J., Walsh, V., McKeefrey, D., Butler, S. R., and Garden, D., 1994, The electrophysiological basis of colour processing in macaques with V4 lesions, Behay. Brain Res. 60: 73–78.Google Scholar
  55. I.achica, E. A., Beck, P., and Casagrande, V. A., 1992, Parallel pathways in macaque monkey striate cortex: Anatomically defined columns in layer III, Proc. Natl. Acad. Sci. USA 89: 3566–3570.Google Scholar
  56. Lennie, P., Krauskopf, J., and Sclar, G., 1990, Chromatic mechanisms in striate cortex of macaque, J. Neurosci. 10: 649–669.PubMedGoogle Scholar
  57. Leventhal, A. G., Thompson, K. G., Liu, D., Zhou, Y., and Ault, S. J., 1995, Concomitant sensitivity to orientation, direction, and color of cells in layers 2, 3, and 4 of monkey striate cortex, J. Neurosci. 15: 1808–1818.PubMedGoogle Scholar
  58. Levitt, J. B., Kiper, D. C., and Movshon, J. A., 1994, Receptive fields and functional architecture of macaque V2, J. Neurophysiol. 71: 2517–2542.PubMedGoogle Scholar
  59. Livingstone, M. S., and Hubel, D. H., 1982, Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex, Proc. Natl. Acad. Sci. USA 79: 6098–6101.PubMedGoogle Scholar
  60. Livingstone, M. S., and Hubel, D. H., 1984a, Anatomy and physiology of a color system in the primate visual cortex, J. Neurosci. 4: 309–356.PubMedGoogle Scholar
  61. Livingstone, M. S., and Hubel, D. H., 1984b, Specificity of intrinsic connections in primate primary visual cortex, J. Neurosci. 4: 2830–2835.PubMedGoogle Scholar
  62. Livingstone, M. S., and Hubel, D. H., 1988, Segregation of form, color, movement, and depth: Anatomy, physiology, and perception, Science 240: 740–749.PubMedGoogle Scholar
  63. Lueck, C. J., Zeki, S. Friston, K. J., Deiber, M. P., Cope, P., Cunningham, V. J., Lammertsma, A. A., Kennard, C., and Frackowiak, R. S. G., 1989, The colour centre in the cerebral cortex of man, Nature 340: 386–389.PubMedGoogle Scholar
  64. MacKay, G., and Dunlop, J. C., 1899, The cerebral lesions in a case of complete acquired colour-blindness, Scott. Med. Surg. J. 5: 503–512.Google Scholar
  65. Maier, J., Dagnelie, G., Sperkreijse, H., and Van, D. B. W., 1987, Principal components analysis for source localization of VEPs in man, Vision Res. 27: 165–177.PubMedGoogle Scholar
  66. Malonek, D., lbotell, R. B. H., and Grinvald, A., 1994, Optical imaging reveals the functional architecture of neurons processing shape and motion in owl monkey area MT, Proc. R. Soc. Loud. B 258: 109–119.Google Scholar
  67. Maunsell, J. H. R., and Gibson, J. R., 1992, Visual response latencies in striate cortex of the macaque monkey, J. Neurophysiol. 68: 1332–1344.PubMedGoogle Scholar
  68. Meadows, J. C., 1974, Disturbed perception of colours associated with localized cerebral lesions, Brain 47: 615–632.Google Scholar
  69. Mestre, D. R., Brouchon, M., Ceccaldi, M., and Poncet, M., 1992, Perception of optical flow in cortical blindness: A case report, Neuropsychologza 30: 783–795.Google Scholar
  70. Nakamura, H., Gattass, R., Desimone, R., and Ungerleider, L. G., 1993, The modular organization of projections from areas VI and V2 to areas V4 and TEO in macaques, J. Neurosci. 13: 3681–3691.PubMedGoogle Scholar
  71. Orban, G. A., Kennedy, H., and Bullier, J., 1986, Velocity and direction selectivity of neurons in areas VI and V2 of the monkey: Influence of eccentricity, J. Neurophysiol. 56: 462–480.PubMedGoogle Scholar
  72. Pasik, T., and Pasik, P., 1982, Visual functions in monkeys after total removal of visual cerebral cortex, Contrib. Sensory Physiol. 7: 147–200.Google Scholar
  73. Peterhans, E., and von der Heydt, R., 1993, Functional organization of area V2 in the alert macaque, Eur. J. Neurosci. 5: 509–524.PubMedGoogle Scholar
  74. Petersen, S. E., Baker, J. F., and Allman, J. M., 1980, Dimensional selectivity of neurons in the dorsolateral visual area of the owl monkey, Brain Res. 197: 507–511.PubMedGoogle Scholar
  75. Petersen, S. E., Miezin, F. M., and Allman, J. M., 1988, Transient and sustained responses in four extrastriate areas of the owl monkey, Exp. Brain Res. 70: 55–60.PubMedGoogle Scholar
  76. Probst, T., Plendl, H., Paulus, W., Wistl, E. R., and Scherg, M., 1993, Identification of the visual motion area (area V5) in the human brain by dipole source analysis, Exp. Brain Res. 93: 345–351.PubMedGoogle Scholar
  77. Raiguel, S. E., Lagae, I.., Gulyas, B., and Orban, G. A., 1989, Response latencies of visual cells in macaque areas V1, V2 and V5, Brain Res. 493: 155–159.PubMedGoogle Scholar
  78. Riddoch, G., 1917, Dissociations of visual perception due to occipital injuries, with especial reference to appreciation of movement, Brain 40: 15–57.Google Scholar
  79. Rizzo, M., Smith, V., Pokorny, J., and Damasio, A. R., 1993, Colour perception profiles in central achromatopsia, Neurology 43: 995–1001.PubMedGoogle Scholar
  80. Rodman, R., Gross, C. G., and Albright, T. C., 1989, Afferent basis of visual response properties in area MT of the macaque. I. Effects of striate cortex removal, J. Neurosci. 9: 2033–2050.PubMedGoogle Scholar
  81. Roe, A. W., and Ts’o, I). Y., 1995, Visual topography in primate V2: Multiple representation across functional stripes, J. Neurosci. 15: 3689–3715.PubMedGoogle Scholar
  82. Ruddock, K. H., 1991, Spatial vision after cortical lesions, in: Spatial Vision ( D. M. Regan, ed.), Macmillan, London, pp. 261–289.Google Scholar
  83. Shipp, S., and Zeki, S., 1985, Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex, Nature 315: 322–325.PubMedGoogle Scholar
  84. Shipp, S., and Zeki, S., 1989a, The organization of connections between areas V5 and V 1 in macaque monkey visual cortex, Eur. J. Neurosci. 1: 309–332.PubMedGoogle Scholar
  85. Shipp, S., and Zeki, S., 19896, The organization of connections between areas V5 and V2 in macaque monkey visual cortex, Eur. J. Neurosci. 1: 333–354.Google Scholar
  86. Shipp, S., de Jong, B. M., Zihl, J., Frackowiak, R. S. J., and Zeki, S., 1994, The brain activity related to residual motion vision in a patient with bilateral lesions of V5, Brain 117: 1023–1038.PubMedGoogle Scholar
  87. Standage, G. P., and Benevento, I.. A., 1983, The organization of connections between the pulvinar and visual area MT in the macaque monkey, Brain Res. 262: 288–294.PubMedGoogle Scholar
  88. Tanaka, M., Weber, H., and Creutzfeldt, O. D., 1986, Visual properties and spatial distribution of neurones in the visual association area on the prelunate gyrus of the awake monkey, Exp. Brain Res. 65: 11–37.PubMedGoogle Scholar
  89. Tootell, R. B. H., Silverman, M. S., DeValois, R. L., and Jacobs, G. H., 1983, Functional organization of the second cortical area in primates, Science 220: 737–739.PubMedGoogle Scholar
  90. Tootell, R. B. H., Silverman, M. S., Hamilton, S. L., DeValois, R. I.., and Switkes, E., 1988, Functional anatomy of macaque striate cortex. III. Color,, J. Neurosci. 8: 1569–1593.PubMedGoogle Scholar
  91. Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., Rosen, B. R., and Belliveau, J. W., 1995, Functional-analysis of human MT and related visual cortical areas using magnetic-resonance-imaging, J. Neurosci. 15: 3215–3230.PubMedGoogle Scholar
  92. Vaina, L. M., 1994, Functional segregation of color and motion processing in the human visual cortex: Clinical evidence, Cerebral Cortex 4: 555–572.PubMedGoogle Scholar
  93. Van Dijk, B., Dagnelie, G., u d Spekreijse, H., 1987, Motion onset—offset visual evoked potentials from rhesus visual cortex, in: Evoked Potentials 111: The Third International Evoked Potential Symposium ( C. Barber and ‘F. Blum, eds.), Butterworths, London, pp. 205–212.Google Scholar
  94. Verrey, D., 1888, Hémiachromatopsie droite absolue. Conservation partielle de la perception lumineuse et des formes. Ancien kyste hémorrhagique dc la partie inférieure du lobe occipital gauche, Arch. Ophthalmol. (Paris) 8: 289–300.Google Scholar
  95. Walsh, V., Carden, D., Butler, S. R., and Kulikowski, J. J., 1993, I’he effects of V4 lesions on the visual abilities of macaques: Hue discrimination and color constancy, Behay. Brain Res. 53: 51–62.Google Scholar
  96. Watson, J. D. G., Myers, R., Frackowiak, R. S. J., Hajnal, J. V., Woods, R. P., Mazziotta, J. C., Shipp, S., and Zeki, S., 1993, Area V5 of the human brain: Evidence from a combined study using positron emission tomography and magnetic resonance imaging, Cerebral Cortex 3: 79–94.PubMedGoogle Scholar
  97. Wechsler, I. S., 1933, Partial cortical blindness with preservation of colour vision: report of a case following asphyxia (carbon monoxide poisoning?), Arch. Ophthalmol. 9: 957–965.Google Scholar
  98. Weiskrantz, I.., 1986, Blindsight, Oxford University Press, Oxford.Google Scholar
  99. Weiskrantz, L., 1990, The Ferrier lecture, 1989. Outlooks for blindsight: Explicit methodologies for implicit processes, Proc. R. Soc. Lund. B 239: 247–278.Google Scholar
  100. Wilson, C. L., Babb, T. L., Halgren, E., and Crandall, P. H., 1983, Visual receptive fields and response properties of neurons in human temporal lobe and visual pathways, Brain 106: 473–502.PubMedGoogle Scholar
  101. Yukie, M., and Iwai, E., 1981, Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys, J. Comp. Neurol. 201: 81–97.PubMedGoogle Scholar
  102. Zeki, S. M., 1969, Representation of central visual fields in prestriate cortex of monkey, Brain Res. 14: 271–291.PubMedGoogle Scholar
  103. Zeki, S. M., 1970, Interhemispheric connections of prestriate cortex in the monkey, Brain Res. 19: 63–75.PubMedGoogle Scholar
  104. Zeki, S. M., 1971, Cortical projections from two prestriate areas, Brain Res. 34: 19–35.PubMedGoogle Scholar
  105. Zeki, S. M., 1974a, Cells responding to changing image size and disparity in the cortex of the rhesus monkey,, /. Physiol. (Land). 242: 827–841.Google Scholar
  106. Zeki, S. M., 19746, Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey, J. Physiol. (Land.) 236: 549–573.Google Scholar
  107. Zeki, S. M., 1975, The functional organization of projections from striate to prestriate visual cortex in the rhesus monkey, Cold Spring Harbor Symp. Quant. Biol. 40: 591–600.Google Scholar
  108. Zeki, S. M., 1977, Colour coding in the superior temporal sulcus of rhesus monkey visual cortex, Proc. R. Soc. B 197: 195–223.Google Scholar
  109. Zeki, S. M., 1978a, Functional specialization in the visual cortex of the monkey, Nature 274: 423–428.PubMedGoogle Scholar
  110. Zeki, S. M., 1978b, The third visual complex of rhesus monkey prestriate cortex,/ Physiol. (Lond.) 277: 245–272.Google Scholar
  111. Zeki, S. M., 1979, Functional specialization and binocular interaction in the visual areas of rhesus monkey prestriate cortex, Proc. R. Soc. Lond. B 204: 379–397.PubMedGoogle Scholar
  112. Zeki, S., 1980, The responses of cells in the anterior bank of the superior temporal sulcus in macaque monkeys,/ Physiol. (Lond.). 308: 85.Google Scholar
  113. Zeki, S., 1983, Colour coding in the cerebral cortex: ‘l’he reaction of cells in monkey visual cortex to wavelengths and colours, Neuroscience 9: 741–765.PubMedGoogle Scholar
  114. Zeki, S., 1990a, A century of cerebral achromatopsia, Brain 113: 1721–1777.PubMedGoogle Scholar
  115. Zeki, S., 1990b, A theory of multi-stage integration in the visual cortex, in: The Principles of Design and Operation of the Brain ( J. C. Eccles and O. Creutzfeldt, eds.), Pontifical Academy of Science, Vatican City, pp. 137–154.Google Scholar
  116. Zeki, S., 1991, Cerebral akinetopsia (visual motion blindness)—A review, Brain 114: 811–824.PubMedGoogle Scholar
  117. Zeki, S., 1993, A Vision of the Brain, Blackwell, Oxford.Google Scholar
  118. Zeki, S., 1995, The motion vision of the blind, Neuroimage 2: 231–235.PubMedGoogle Scholar
  119. Zeki, S., 1996, Are areas TEO and PIT of monkey visual cortex wholly distinct from the fourth visual complex (V4 complex)? Proc. R. Soc. Land. B 263: 1539–1544.Google Scholar
  120. Zeki, S., and Shipp, S., 1988, The functional logic of cortical connections, Nature 335:311–317. Zeki, S., and Shipp, S., 1989, Modular connections between areas V2 and V4 of macaque monkey visual cortex. Eur. J. Neurosci. 1: 494–506.Google Scholar
  121. Zeki, S., Watson, J. D. G., Lueck, C. J., Friston, K.J., Kennard, C., and Frackowiak, R. S. J., 1991, A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11: 64 1649.Google Scholar
  122. Zeki, S., Watson, J. D. G., and Frackowiak, R. S. J., 1993, Going beyond the information given: The relation of illusory visual motion to brain activity, Proc. R. Soc. Land. B 252: 215–222.Google Scholar
  123. Zheng, D., LaMantia, A. S., and Purves, D., 1991, Specialized vascularization of the primate visual cortex, f. Neurosci. 11: 2622–2629.Google Scholar
  124. Zihl, J., 1980, “Blindsight”: Improvement of visually guided eye movements by systematic practice in patients with cerebral blindness, Neuropsychologia 18: 71–77.Google Scholar
  125. Zihl, J., Von Cramon, D., and Mai, N., 1983, Selective disturbance of movement vision after bilateral brain damage, Brain 106: 313–340.PubMedGoogle Scholar
  126. Zihl, J., Von Cramon, 1)., Mai, N., and Schmid, C., 1991, Disturbance of movement vision after bilateral posterior brain damage. Further evidence and follow up observations, Brain 114: 2235–2252.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • S. Zeki
    • 1
  1. 1.Wellcome Department of Cognitive NeurologyUniversity College LondonLondonEngland

Personalised recommendations