Construction and Representation of Visual Space in the Inferior Parietal Lobule

  • Ralph M. Siegel
  • Heather L. Read
Part of the Cerebral Cortex book series (CECO, volume 12)


In human subjects, neurological case histories have provided details of striking deficits of cognitive functions. These findings have been supplemented by comparative studies in nonhuman primates that permit invasive manipulations and measurements of brain tissue, as well as theories that provide a structure for the synthesis and distillation of such clinical and experimental results into general principles. The formation of visuospatial representations of the surrounding world has proven to be particularly amenable to this multifaceted approach. Although far from being completely understood, substantial progress has been made in the past 20 years in the analysis of this cognitive process. One patient, suffering from profound hemi-inattention has:

lost her idea of ‘left,’ both with regard to the world and her own body. Sometimes (when eating) she complains that her portions are too small, but this is because she eats only from the right half of the plate—it does not occur to her that it has a left half as well. Sometimes, she will put on lipstick, and make tip the right half of her face, leaving the left half completely neglected: It is almost impossible to treat these things, because her attention cannot be drawn to them, and she has no conception that they are wrong. She knows it intellectually, and can understand, and laugh; but it is impossible for her to know it directly. (Sacks, 1985)

This particular type of spatial and attentional deficit arises from damage to associational cortical regions which were initially defined on the basis of late myelination during development (Flechsig, 1876). This patient does not have a hemianopia (half-vision field blindness), for her vision is normal. But her cognitive disassociations are in a sense more profound than blunt dissections of primary sensory or motor function. Removal of primary sensory or motor cortex leads to devastating blindness, deafness, or paralysis. But such loss can be overcome, at least in the sensory modality, by reliance on spared sensory capabilities. However, damage to the association cortex strikes at the very core of being. The patient can see but cannot attend to half of her visual world. She cannot intellectually compensate, because her spatial intellect itself is damaged. The challenge to neuroscience is to generate mechanistic explanations, perhaps reductionist, perhaps synthetic, to account for normal cognitive deficits on this scale. These explanations might explain cognitive function in the normal individual.


Receptive Field Optic Flow Visual Space Inferior Parietal Lobule Posterior Parietal Cortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allman, J. M., Kaas, J. H., and Lane, R. H., 1973, The middle temporal visual area (MT) in the bushbaby, Galago senegalensis, Brain Res. 57: 197–202.PubMedGoogle Scholar
  2. Andersen, R. A., and Mountcastle, V. B., 1983, The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex, J. Neurosci. 3: 532–548.PubMedGoogle Scholar
  3. Andersen, R. A., Asanuma, C., and Cowan, W. M., 1985a, Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes, J. Comp. Neurol. 232: 443–455.PubMedGoogle Scholar
  4. Andersen, R. A., Essick, G. K., and Siegel, R. M., 1985b, The encoding of spatial location by posterior parietal neurons, Science 230: 456–458.PubMedGoogle Scholar
  5. Andersen, R. A., Essick, G. K., and Siegel, R. M., 1987, Neurons of area 7a activated by both visual stimuli and oculomotor behavior, Exp. Brain Res. 67: 316–322.PubMedGoogle Scholar
  6. Andersen, R. A., Asanuma, C., Essick, G. K., and Siegel, R. M., 1990a, Cortico-cortical connections of anatomically and physiologically defined subdivisions within inferior parietal lobule,/ Comp. Neurol. 232: 443–455.Google Scholar
  7. Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W., and Fogassi, L., 1990b, Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque, J. Neurosci. 10:1176–1196.Google Scholar
  8. Asanuma, C., Andersen, R. A., and Cowan, W. M., 1985, The thalamic relations of the caudal inferior parietal lobule and the lateral prefrontal cortex in monkeys: Divergent cortical projections from cell clusters in the medial pulvinar nucleus, J. Comp. Neurol. 241: 357–381.PubMedGoogle Scholar
  9. Bach, M., Bouis, D., and Fischer, B., 1983, An accurate and linear infrared oculometer, J. Neurosci. Meth. 9: 9–14.Google Scholar
  10. Baizer, J. S., Ungerleider, L. G., and Desimone, R., 1991, Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques, J. Neurosci. 11:168–190.Google Scholar
  11. Baiter, J. S., Desimone, R., and Ungerleider, L. G., 1993, Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys, Visual Neurosci. 10: 59–72.Google Scholar
  12. Ballard, D. H., Hinton, G. E., and Sejnowski, T. J., 1983, Parallel visual computation, Nature 306: 21–26.PubMedGoogle Scholar
  13. Barbas, H., 1986, Pattern in the laminar origin of corticocortical connections, J. Comp. Neurol. 252: 415–422.PubMedGoogle Scholar
  14. Barlow, H. B., 1972, Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1:371–394.Google Scholar
  15. Battaglini, P. P., Galletti, C., and Fattori, l’., 1993, Functional properties of neurons in area V 1 of awake macaque monkeys: Peripheral versus central visual field representation, Arch. Ital. Biol. 131: 303–315.PubMedGoogle Scholar
  16. Beverley, K. I., and Regan, D., 1975, The relation between discrimination and sensitivity in the perception of motion in depth, J. Physiol. 249: 387–398.PubMedGoogle Scholar
  17. Blumcke, I., Hof, P. R., Morrison, J. H., and Celio, M. R., 1990, Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans, J. Comp. Neurol. 301: 417–432.PubMedGoogle Scholar
  18. Boussaoud, D., Ungerleider, L. G., and Desimone, R., 1990, Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque, J. Comp. Neurol. 296: 462–495.PubMedGoogle Scholar
  19. Bruce, C., Desimone, R., and Gross, C. G., 1981, Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque, Neurophysiol. 46: 369–384.Google Scholar
  20. Caminiti, R., Johnson, P. B., and Urbana, A., 1990, Making arm movements within different parts of space: Dynamic aspects in the primate motor cortex, J . Neurosci. 10: 2039–2058.Google Scholar
  21. Cavada, C., and Goldman-Rakic, P. S., 1989, Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections, Comp. Neurol. 287: 393–421.Google Scholar
  22. Chang, J. J., and Julesz, B., 1985, Cooperative and non-cooperative processes of apparent movement of random-dot cinematograms, Spat. Vis. 1: 39–45.PubMedGoogle Scholar
  23. Churchland, P. M., and Sejnowski, T. J., 1992, The Computational Brain, MIT Press, Cambridge, MA. Colby, C. L., Duhamel, J. R., and Goldberg, M. E., 1993, Ventral intraparietal area of the macaque: Anatomic location and visual response properties, J. Neurophysiol. 69: 902–914.Google Scholar
  24. Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., and Woolsey, T. A., 1972, The autoradiographic demonstration of axonal connections in the central nervous system, Brain Res. 37: 21–51.PubMedGoogle Scholar
  25. Critchley, M., 1953, The Parietal Lobes, Hafner Press, New York.Google Scholar
  26. Damasio, A. R., Damasio, H., ‘Franc’, D., and Brandt, J. P., 1990, Neural regionalization of knowledge access: Preliminary evidence, Cold Spring Harbor Symp. Quant. Biol. 55: 1039–1047.PubMedGoogle Scholar
  27. Deecke, L., Schwartz, D. W., and Fredrickson, J. M., 1977, Vestibular responses in the rhesus monkey ventroposterio thalamus. I1. Vestibulo-proprioceptive convergence at thalamic neurons, Exp. Brain Res. 30: 219–232.PubMedGoogle Scholar
  28. Dow, B. M., Vautin, R. G., and Bauer, R., 1985, The mapping of visual space onto foveal striate cortex in the macaque monkey, J. Neurosci. 5:890–902.CHAPTER 12 Duffy, C. J., and Wurtz, R. H., 1991a, Sensitivity of MST neurons to optic flow stimuli. 1. A continuum of response selectivity to large-field stimuli, J. Neurophysiol. 65: 1329–1345.Google Scholar
  29. Duffy, C. J., and Wurtz, R. H., 1991b, Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli, J. Neurophys. 65: 1346–1359.Google Scholar
  30. Economo, C., 1929, The Cytoarchileclonics of the Human Cerebral cortex, Oxford University Press, Oxford.Google Scholar
  31. Edelman, G. M., 1990, The Remembered Present, Basic Books, New York.Google Scholar
  32. Ettlinger, G., 1990, Object vision and spatial vision: The neuropsychological evidence for the distinction, Cortex 26: 319–341.PubMedGoogle Scholar
  33. Evarts, E. V., 1966, Methods for recording activity of individual neurons in moving animals, in: Methods in Medical Research, Year Book, Chicago, pp. 241–250.Google Scholar
  34. Faugier-Grimaud, S., and Ventre, J., 1989, Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vest.ibulo-ocular function in a monkey (Macaca Jàscicularis), J.Comp. Neurol. 280: 1–14.PubMedGoogle Scholar
  35. Faust, C., 1947, Ubergestaltzerfall als symptom des parieto-ocipitalen ubergangs gebietes bei clop• pelseitige, Nervenarzt 18: 103–115.PubMedGoogle Scholar
  36. Felleman, D. J., and Van Essen, D. C., 1991, Distributed hierarchial processing in primate cerebral cortex, Cerebral Cortex 1:1–47.Google Scholar
  37. Feynman, R. P., Leighton, R. B., and Sands, M., 1963, The Feynman Lectures on Physics, Addison-Wesley, Reading, MA.Google Scholar
  38. Flechsig, P., 1876, Die Leitungsbahnen im Gehirn und Ruckenmark des Menschen au/ Grund Entwichelungsgeschichtlicher Untersuchungen, Engehnann, Leipzig.Google Scholar
  39. Friedman, H. R., and Goldman-Rakic, P. S., 1994, Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey, J. Neurosci. 14: 2775–2788.PubMedGoogle Scholar
  40. Galletti, C., Squatrito, S., Battaglini, P. P., and Maioli, M. G., 1984, Real-motion cells in the primary visual cortex of macaque monkeys, Brain Res. 301: 95–110.PubMedGoogle Scholar
  41. Georgopoulos, A. P., 1986, On reaching, Anno. Rev. Neurosci. 9: 147–170.Google Scholar
  42. Georgopoulos, A. P., Schwartz, A. B., and Kettner, R. E., 1986, Neuronal population coding of movement direction, Science 233: 1416–1419.PubMedGoogle Scholar
  43. Gibson, J. J., 1966, The Senses Considered as Perceptual Systems, Houghton Mifflin, Boston.Google Scholar
  44. Gnadt, J. W., and Andersen, R. A., 1988, Memory related motor planning activity in posterior parietal cortex of macaque, Exp. Brain Res. 70: 216–220.PubMedGoogle Scholar
  45. Gnadt, J. W., and Mays, L. E., 1989, Posterior parietal cortex, the oculomotor near response and spatial coding in 3-D space, Soc. Neurosci. Abstr. 19: 786.Google Scholar
  46. Golomb, B., Andersen, R. A., Nakayama, K., Macleod, I). I. A., Wong, A., 1985, Visual thresholds for shearing motion in monkey and man, Vision Res. 25: 813–820.Google Scholar
  47. Gray, C. M., and Singer, W., 1989, Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci. USA 86: 1698–1702.PubMedGoogle Scholar
  48. Graziano, M., Andersen, R. A., and Snowden, R. J., 1994, Tuning of MST to spiral motions, J. Neurosci. 14: 56–67.Google Scholar
  49. Gross, C. G., 1994, How inferior temporal cortex became a visual area, Cerebral Cortex 4:455–69..Google Scholar
  50. Hammond, P., and MacKay, D. M., 1975, Differential responses of cat visual cortical cells to textured stimuli, Exp. Brain Res. 22: 427–430.Google Scholar
  51. Hocherman, S., 1993, Proprioceptive guidance and motor planning of reaching movements to unseen targets, Exp. Brain Res. 95: 349–58.PubMedGoogle Scholar
  52. Hof, P. R., and Morrison, J. H., 1990, Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: 11. Primary and secondary visual cortex, J. Comp. Naomi. 301: 55–64.Google Scholar
  53. Holmes, G., 1927, Disorders of sensation produced by cortical lesions, Brain 50: 413–427.Google Scholar
  54. Judge, S. J., Richmond, B. J., and Chu, F. C., 1980, Implantation of magnetic search coils for measurement of eye position: An improved method, Vision Res. 20: 535–538.PubMedGoogle Scholar
  55. Kalaska, J. F., Cohen, D. A., Hyde, M. L., and Prud’homme, M., 1989, A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task, J. Neurosci. 9: 2080–2102.PubMedGoogle Scholar
  56. Kapoula, Z., Optican, L. M., and Robinson, D. A., 1990, Retinal image motion alone does not control disconjugate postsaccadic eye drift, J. Neurophysiol. 63: 999–1009.PubMedGoogle Scholar
  57. Klüver, H., and Bucy, P. C., 1939, Preliminary analysis of functions of the temporal lobes in monkeys, Arch. Neurol. Psychiatry 42: 979–1000.Google Scholar
  58. Knowlton, B. J., and Squire, L. R., 1993, The learning of categories: Parallel brain systems for item memory and category knowledge, Science 262: 1747–1749.PubMedGoogle Scholar
  59. Koenderink, J. J., 1986, Optic flow, Vision Res. 25: 161–180.Google Scholar
  60. Lagae, L., Gulyas, B., Raiguel, S., and Orban, G. A., 1989, Laminar analysis of motion information processing in macaque V5, Brain Res. 496: 361–367.PubMedGoogle Scholar
  61. Lagae, L., Macs, H., Raiguel, S., Xiao, D. K., and Orban, G. A., 1994, Responses of macaque STS neurons to optic flow components: A comparison of areas M’l’ and MST,/. Neurophys. 71: 1597 1626.Google Scholar
  62. Lynch, J. C., 1980, The functional organization of the posterior parietal cortex, Beliay. Brain Sci. 3: 485–534.Google Scholar
  63. Lynch, J. C., Mountcastle, V. B., Talbot, W. H., and Vin, T. C., 1977, Parietal lobe mechanisms for directed visual attention, /. Neuropltysiol. 40: 362–389.Google Scholar
  64. Maunsell, J. H., and Van Essen, 1). C., 1983, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey, Neurosci. 3: 2563 2586.Google Scholar
  65. May, J. G., and Andersen, R. A., 1986, Different patterns of corticopontine projections from separate cortical fields within the inferior parietal lobule and dorsal prelunate gyrus of the macaque, Exp. Brain Res. 63: 265–278.PubMedGoogle Scholar
  66. Mesulam, M.-M., 1990, Large scale neurocognitive networks and distributed processing for attention, language, and memory, Ann. Neurol. 28: 597–612.PubMedGoogle Scholar
  67. Mesulam, M.-M., Van Hoesen, G. W., Pandya, D. N., and Geschwind, N., 1977, Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey, Brain Res. 136: 393–414.Google Scholar
  68. Mesulam, M., Hegarty, E., Barbas, H., Carson, K. A., Gower, E. C., Knapp, A. G., Moss, M. B., and Mufson, E. J., 1980, Additional factors influencing sensitivity in the tetramethyl benzidine method for horseradish peroxidase neurohistochemistry, Histochem. Cytochem. 28: 1255–1259.Google Scholar
  69. Miles, F. A., Kawano, K., and Optican, L. M., 1986, Short-latency ocular following responses of monkey. I. Dependence on temporospatial properties of visual input, Neurophysiol. 56: 1321–1354.Google Scholar
  70. Mishkin, M., and Pribram, K. H., 1954, Visual discrimination performance following partial ablations of the temporal lobe: 1. Ventral vs. lateral, Comp. Physiol. Psychol. 47: 14–20.Google Scholar
  71. Mishkin, M., Ungerleider, L. G., and Macko, K. A., 1983, Object vision and spatial vision: Two cortical pathways, TINS 6: 414–417.Google Scholar
  72. Moran, J., and Desimone, R., 1985, Selective attention gates visual attention processing in extrastriate cortex, Science 229: 782–784.PubMedGoogle Scholar
  73. Morgan, M. J., and Ward, R., 1980, Conditions for motion flow in dynamic visual noise, Vision Res. 20: 431–435.PubMedGoogle Scholar
  74. Motter, B. C., and Mountcastle, V. B., 1981a, The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: Fovea) sparing and opponent vector organization, Neurosci. 1: 3–26.Google Scholar
  75. Motter, B. C., and Mountcastle, V. B., 1981b, “Elie functional properties of the light-sensitive neurons of the posterior parietal cortex, /. Neurosci. 1: 3–26.Google Scholar
  76. Motter, B., Steinmetz, M. A., Duffy, C. J., and Mountcastle, V. B., 1987, Functional properties of parietal visual neurons: Mechanisms of directional selectivity,/ Neurosci. 7: 154–176.Google Scholar
  77. Mountcastle, V. B., 1976, ‘Elie world around us: Neural command function for selective attention, Neurosci. Res. Program Bull. 14: 1–47.Google Scholar
  78. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., and Acuna, C., 1975, Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space, Neurophys. 78: 871–908.Google Scholar
  79. Mountcastle, V. B., Andersen, R. A., and Motter, B. C., 1981, The influence of attentive fixation upon the excitability of the light sensitive neurons of the posterior parietal cortex, Neurosci. 1: 1218–1235.Google Scholar
  80. Mountcastle, V. B., Motter, B. C., Steinmetz, M. A., and Sestokas, A. K., 1987, Common and differential effects of attentive fixation on the excitability of parietal and prestriate (V4) cortical visual neurons in the macaque monkey, Neurosci. 7: 2239–2255.Google Scholar
  81. Nakayama, K., and Silverman, G. H., 1984, Temporal and spatial characteristics of the upper displacement limit for motion in random dots, Vision Res. 24: 293–299.PubMedGoogle Scholar
  82. Newcombe, F., and Ratcliff, G., 1989, Disorders of visuospatial analysis, in: Handbook of Neuropsychology, Elsevier, New York, pp. 333–356.Google Scholar
  83. Newsome, W. T., and Pare, E. B., 1988, A selective impairment of motion perception following lesions of the middle temporal visual area (MT), J. Neurosci. 8: 2201–2211.PubMedGoogle Scholar
  84. Orban, G. A., Kennedy, H., and Bullier, J., 1986, Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey, Exp. Brain Res. 56: 462–480.Google Scholar
  85. Orban, G. A., Lagae, L., and Verri, A., 1992, First order analysis of optical flow in monkey brain, Proc. Natl. Acad. Sci. USA 89: 2595–2599.PubMedGoogle Scholar
  86. Pandya, D. N., and Seltzer, B., 1982a, Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey, J. Comp. Neurol. 204: 196–210.PubMedGoogle Scholar
  87. Pandya, D. N., and Seltzer, B., 19826, Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey, J. Comp. Neural. 204: 196–210.Google Scholar
  88. Paterson, A., and Zangwill, O. L., 1944, Disorders of visual space perception associated with lesions of right cerebral hemisphere, Brain 67: 331–358.Google Scholar
  89. Pellionisz, A. J., and Ramos, C. F., 1993, Geometrical approach to neural net control of movements and posture [Review], Prog. Brain Res. 97: 245–256.PubMedGoogle Scholar
  90. Ratcliff, G., and Davies Jones, G. A., 1972, Defective localization in focal brain wounds, Brain 95: 49.PubMedGoogle Scholar
  91. Read, H. L., Anderson, K. C., Noguiera, C. A. M., and Siegel, R. M., 1994, Space cells in the dorsal stream: Optic flow sensitivity in area 7a, Abstr. Soc. Neurosci. 20: 1278.Google Scholar
  92. Read, H. L., and Siegel, R. M., 1997, Modulation of responses to optic flow in area 7a by retinotopic and oculomotor cues in monkey, Cerebral Cortex 7: 1–16.Google Scholar
  93. Regan, D., 1986, Visual processing of four kinds of relative motion, Vision Res. 26: 127–145.PubMedGoogle Scholar
  94. Regan, D., and Beverley, K. L, 1979, Visually guided locomotion: Psychophysical evidence for a neural mechanism sensitive to flow patterns, Science 205: 311–313.PubMedGoogle Scholar
  95. Regan, D., Giaschi, D., Sharpe, J. A., and Hong, X. H., 1992, Visual processing of motion-defined form: Selective failure in patients with parietotemporal lesions, J. Neurosci. 12: 2198–2210.PubMedGoogle Scholar
  96. Riddoch, G., 1917, On the relative perception of movement of a stationary object in certain visual disturbance, Proc. R. Soc. Med. 10: 13–34.PubMedGoogle Scholar
  97. Robinson, D. L., Goldberg, M. E., and Goldberg, G. B., 1978, Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations, J. Neurophysiol. 41: 910–9. 32.Google Scholar
  98. Robinson, D. L., Petersen, S. E., and Keys, W., 1986, Saccade-related and visual activities in the pulvinar nuclei of the behaving rhesus monkey, Exp. Brain Res. 62: 625–634.PubMedGoogle Scholar
  99. Sacks, O. W., 1985, Eyes right! in: The Man Who Mistook His Wile for a Hal and Other Clinical Stories, Summit, New York, pp. 73–75.Google Scholar
  100. Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., and Iwai, E., 1986, Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey, J. Neurosci. 6: 145–157.PubMedGoogle Scholar
  101. Sakata, H., Shibutani, H., and Kawano, K., 1980, Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey,/ Neuraphysiol. 43: 1654–1672.Google Scholar
  102. Sakata, H., Shubutani, H., Ito, Y., and Tsurugai, K., 1984, Parietal visual neurons respond to rotary movements of the visual stimulus, J. Physiol. Soc. jpn. 46: 445.Google Scholar
  103. Scott, S. H., and Kalaska, J. F., 1994, Cell activity in monkey motor cortex is altered by changes in arm posture for movements with identical hand trajectories, Abstr. Soc. Neurosci. 20: 982.Google Scholar
  104. Selemon, L. D., and Goldman-Rakic, P. S., 1988, Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: Evidence for a distributed neural network subserving spatially guided behavior, J. Neurosci. 8: 4049–4068.PubMedGoogle Scholar
  105. Siegel, R. M., 1998, Representation of visual space in area 7a neurons: A theoretical approach using the center of mass, J. Comp. Neurosci.Google Scholar
  106. Siegel, R. M., and Andersen, R. A., 1988, Perception of three-dimensional structure from two-dimensional motion in monkey and man, Nature 3319: 259–261.Google Scholar
  107. Siegel, R. M., and Andersen, R. A., 1990, The perception of structure from motion in monkey and man, J. Cognitive Neurosci. 2: 306–319.Google Scholar
  108. Siegel, R. M., and Read, H. L., 1994, Egocentric motion from optic flow and eye position in area 7a of the behaving macaque, Abstr. Soc. Neurosci. 20: 1278.Google Scholar
  109. Siegel, R. M., and Read, H. L., 1997, Analysis of optic flow in the monkey brain, Cerebral Cortex 7: 327–346.PubMedGoogle Scholar
  110. Stark, M., Coslett, H. B., and Saffran, E. M., 1996, Impairment of an egocentric map of locations: implications for perception and action, Cog. Neuropsych. 13: 481–523.Google Scholar
  111. Steinmetz, M. A., Motter, B., Duffy, C. J., and Mountcastle, V. B., 1987, Functional properties of parietal visual neurons: Radial organization of directionalities, J. Neurosci. 7: 177–191.PubMedGoogle Scholar
  112. Stenvers, H. W., 1951, Localization direct et localization par image dans les champs visuals peripheriques, Rev. Oto-neuro-opthalmol. 23: 6.Google Scholar
  113. Tanaka, K., Hikosaka, K., Saito, H., Yukie, M., Fukada, Y., and Iwai, E., 1986, Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey,/ Neurosci. 6: 134–144.Google Scholar
  114. Tomlinson, R. 1)., and Robinson, D. A., 1984, Signals in vestibular nucleus mediating vertical eye movements in the monkey, J. Neurophysiol. 51: 1121–1136.Google Scholar
  115. Tranel, D., and Damasio, A. R., 1985, Knowledge without awareness: An autonomic index of facial recognition by prosopagnosics, Science 228: 1453–1454.PubMedGoogle Scholar
  116. Ullman, S., 1979, The Interpretation of Visual Motion, MIT Press, Cambridge, MA.Google Scholar
  117. Ungerleider, L. G., and Desimone, R., 1986, Cortical connections of visual area MT in the macaque, J. Camp. Neurol. 248: 190–222.Google Scholar
  118. Ungerleider, L. G., and Desimone, R., 1991, Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques, J. Neurosci. 11: 168–190.PubMedGoogle Scholar
  119. Ungerleider, L. G., and Mishkin, M., 1982, Two cortical systems, in: Analysis of Visual Behavior, MIT Press, Cambridge, MA, pp. 549–586.Google Scholar
  120. Vaina, L. M., 1994, Functional segregation of color and motion processing in the human visual cortex: Clinical evidence, Cerebral Cortex 5: 555–572.Google Scholar
  121. Ventre, J., and Faugier-Grimaud, S., 1988, Projections of the temporo-parietal cortex on the vestibular complex in the macaque monkey (Macaca fascicularis), Exp. Brain Res. 72: 653–658.PubMedGoogle Scholar
  122. Von Bonin, G., and Bailey, P., 1947, The Neocortex of Macaca Mulatta, University of Illinois Press, Urbana, IL.Google Scholar
  123. Von Helmholtz, L. F., 1924, Helmholtz’s Treatise on Physiological Optics [translated from 3rd German ed.], Dover, New York.Google Scholar
  124. Waitzman, D. M., Ma, ‘1’. P., Optican, 1.. M., and Wurtz, R. H., 1988, Superior colliculus neurons provide the saccadic motor error signal, Exp. Brain Res. 72: 649–652.PubMedGoogle Scholar
  125. Walker, A. E., 1940, A cytoarchitectural study of the prefrontal area of the macaque monkey,/ Comp. Neural. 73: 86.Google Scholar
  126. Walker, N., Meyer, D. E., and Smelcher, J. B., 1993, Spatial and temporal characteristics of rapid cursor-positioning movements with electromechanical mice in human—computer interaction, Human Factors 35: 431–458.PubMedGoogle Scholar
  127. Warrington, E. K., and McCarthy, R. A., 1987, Categories of knowledge: Further fractionations and an attempted integration, Brain 110: 1273–1296.PubMedGoogle Scholar
  128. Warrington, E. K., and Shallice,’E, 1984, Category specific semantic enhancements, Brain 107: 829854.Google Scholar
  129. Werkhoven, P., and Koeuderink, J. J., 1991, Visual processing of rotary motion, Percept. Psychophys. 49: 73–82.PubMedGoogle Scholar
  130. Williams, D. W., and Sekuler, R., 1984, Coherent global motions from stochastic local motions, Vision Res. 24: 55–62.PubMedGoogle Scholar
  131. Wilson, F. A., Scalaidhe, S. P., and Goldman-Rakic, P. S., 1993, Dissociation of object and spatial processing domains in primate prefrontal cortex, Science 260: 1955–1958.PubMedGoogle Scholar
  132. Yin, T. C., and Mountcastle, V. B., 1977, Visual input to the visuomotor mechanisms of the monkey’s parietal lobe, Science 197: 1381–1383.PubMedGoogle Scholar
  133. Yin, T. C., and Mountcastle, V. B., 1978, Mechanisms of neural integration in the parietal lobe for visual attention, Fed. Proc. 37: 2251–2257.PubMedGoogle Scholar
  134. Young, A. W., Newcombe, D. H., and de Haan, E., 1989, Implicit access to semantic information, Brain Cognition 11: 186.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ralph M. Siegel
    • 1
  • Heather L. Read
    • 1
  1. 1.Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewarkUSA

Personalised recommendations