Skip to main content

Evolution of Neocortex

  • Chapter

Part of the book series: Cerebral Cortex ((CECO,volume 8A))

Abstract

In this chapter I shall attempt to derive the outlines of a theory of neocortical evolution from a series of observations based mainly on the anatomy and physiology of cerebral cortex in living animals. Such an exercise in evolutionary inference is by its nature a speculative enterprise. Hopefully, it will serve to guide future comparative, developmental and biophysical studies that might shed some additional light on this intriguing but inaccessible topic. To illustrate organizational features of cortex, I have drawn examples mainly from visual cortex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akam, M., 1987, The molecular basis for metameric pattern in the Drosophila embryo, Development 101:1–22.

    PubMed  CAS  Google Scholar 

  • Allman, J., 1977, Evolution of the visual system in the early primates, Prog. Psychobiol. Physiol. Psychol. 7:1–53.

    Google Scholar 

  • Allman, J. M., 1987, Maps in context: Some analogies between visual cortical and genetic maps, in: Matters of Intelligence (L. Vaina, ed.), Reidel, Dordrecht, pp. 369–393.

    Chapter  Google Scholar 

  • Allman, J. M., and Kaas, J. H., 1971a, A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus), Brain Res. 31:84–105.

    Article  Google Scholar 

  • Allman, J. M., and Kaas, J. H., 1971b, Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus), Brain Res. 35:89–106.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J., and McGuinness, E., 1988, Visual cortex in primates, in: Comparative Primate Biology, Volume 4 (H. Steklis and J. Erwin, eds.), Alan Liss, New York, pp. 279–326.

    Google Scholar 

  • Allman, J., Miezin, F., and McGuinness, E., 1985, Stimulus specific responses from beyond the classical receptive field: Neurophysiological mechanisms for local-global comparisons in visual neurons, Annu. Rev. Neurosci. 8:407–430.

    Article  PubMed  CAS  Google Scholar 

  • Allman, J., Miezin, F., and McGuinness, E., 1988, The effects of background motion on the responses of neurons in the first and second cortical visual areas, in: Signal and Sense, Neuroscience Research Program, New York, in press.

    Google Scholar 

  • Awgulewitsch, A., Utset, M., Hart, C., McGinnis, W., and Ruddle, F., 1986, Spatial restriction in expression of a mouse homeo box locus within the central nervous system, Nature 320:328–335.

    Article  PubMed  CAS  Google Scholar 

  • Baker, J., Petersen, S., Newsome, W., and Allman, J., 1981, Visual response properties of neurons in four extrastriate visual areas of the owl monkey (Aotus trivirgatus): A quantitative comparison of medial, dorsomedial, dorsolateral and middle temporal areas, J. Neurophysiol. 45:397–416.

    PubMed  CAS  Google Scholar 

  • Bennett, A. F., and Ruben, J. A., 1979, Endothermy and activity in vertebrates, Science 206:649–654.

    Article  PubMed  CAS  Google Scholar 

  • Bohringer, R. C., and Rowe, M. J., 1977, The organization of the sensory and motor areas of cerebral cortex in the platypus (Ornithorhynchus anatinus), J. Comp. Nenrol. 174:1–14.

    Article  CAS  Google Scholar 

  • Bok, S., and Taalman Kip, M., 1939, The size of the body and the size and number of nerve cells in the cerebral cortex, Acta Neerl. Morphol. 3:1–22.

    Google Scholar 

  • Brauer, K., and Schober, W., 1970, Catalogue of Mammalian Brains, Fischer, Jena.

    Google Scholar 

  • Carroll, R., 1988, Vertebrate Paleontology and Evolution, Freeman, New York.

    Google Scholar 

  • Creutzfeldt, O., 1978, The neocortical link: Thoughts on the generality of structure and function in the neocortex, in: Architectonics of the Cerebral Cortex (M. Brazier and H. Petsche, eds.), Raven Press, New York, pp. 367–384.

    Google Scholar 

  • Crile, G., and Quiring, D., 1940, A record of the body weight and certain organ and gland weights of 3690 animals, Ohio J. Sci. 40:219–259.

    Google Scholar 

  • Davis, C., Noble-Topham, S., Rossant, J., and Joyner, A., 1988, Expression of the homeo box-containing gene En-2 delineates a specific region of the developing mouse brain, Genes Dev. 2:361–371.

    Article  PubMed  CAS  Google Scholar 

  • Desimone, R., Schein, S., Moran, J., and Ungerleider, L., 1985, Contour, colour, and shape analysis beyond the striate cortex, Vision Res. 25:441–452.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, I. T., Conley, M., Itoh, K., and Fitzpatrick, D., 1985, Laminar organization of geniculocortical projections in Galago senegalensis and Aotus trivirgatus, J. Comp. Neurol. 242:610.

    Article  Google Scholar 

  • Edelman, G. M., 1987, Neural Darwinism, Basic Books, New York.

    Google Scholar 

  • Eisenberg, J., 1981, The Mammalian Radiations, University of Chicago Press, Chicago.

    Google Scholar 

  • Elias, H., and Schwartz, D., 1969, Surface area of the cerebral cortex of mammals determined by stereological methods, Science 166:111–113.

    Article  PubMed  CAS  Google Scholar 

  • Flechsig, P., 1904, Einige bemerkungen uber die Untersuchungsmethoden der grosshirnrinde insbesondere des menschen, Ber. Verh. Saechs. Ges. Wiss. Leipzig Math. Phys. K1. 56:5–104, 177-248.

    Google Scholar 

  • Frahm, H., Stephan, H., and Stephan, M., 1982, Comparison of brain structure volumes in Insectivora and primates. I. Neocortex, J. Hirnforsch. 23:375–389.

    PubMed  CAS  Google Scholar 

  • Gaul, U., Seifert, E., Struhl, R., and Jackie, H., 1987, Analysis of Kruppel protein distribution during early Drosophila development reveals posttranscriptional regulation, Cell 50:639–647.

    Article  PubMed  CAS  Google Scholar 

  • Gehring, W., 1985, The molecular basis of development, Sci. Am. 153-162.

    Google Scholar 

  • Gregory, W., 1935, Reduplication in evolution, Rev. Biol. 10:272–290.

    Article  Google Scholar 

  • Haberly, L. B., 1985, Neuronal circuitry in olfactory cortex: Anatomy and functional implications, Chem. Senses 10:219–238.

    Article  Google Scholar 

  • Haug, H., 1987, Brain sizes, surfaces, and neuronal sizes in the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant), Am. J. Anat. 180:126–142.

    Article  PubMed  CAS  Google Scholar 

  • Heller, S. B., and Ulinski, P. S., 1987, Morphology of geniculocortical axons in turtles of the genera Pseudemys and Chrysemys, Anat. Embryol 175:505–515.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, S., and Kamiya, T., 1972, Atlas of the Vertebrate Brain, University Park Press, Baltimore.

    Google Scholar 

  • Ingham, P., 1988, The molecular genetics of embryonic pattern formation in Drosophila, Nature 335:28–34.

    Article  Google Scholar 

  • Ingle, D., 1985, The goldfish as a retinex animal, Science 227:651–654.

    Article  PubMed  CAS  Google Scholar 

  • Kaas, J. H., Hall, W. C., and Diamond, I. T., 1970, Cortical visual areas I and II in the hedgehog: Relation between evoked potential maps and architectonic subdivisions, J. Neurophysiol. 33:595–615.

    PubMed  CAS  Google Scholar 

  • Kemali, M., and Braitenberg, V., 1969, Atlas of the Frog’s Brain, Springer, Berlin.

    Book  Google Scholar 

  • Kluver, H., 1942, Functional significance of the geniculostriate system, Biol. Symp. 7:253–300.

    Google Scholar 

  • Land, E. H., 1986, An alternative technique for the computation of the designator in the retinex theory of color vision, Proc. Natl. Acad. Sci. USA 83:3078–3080.

    Article  PubMed  CAS  Google Scholar 

  • Laughton, A., and Scott, M., 1984, Sequence of a Drosophila segmentation gene: Protein structure homology with DNA-binding proteins, Nature 310:25–31.

    Article  Google Scholar 

  • Lewis, E., 1951, Pseudoallelism and gene evolution, Cold Spring Harbor Symp. Quant. Biol. 16:159–174.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E., 1978, A gene complex controlling segmentation in Drosophila, Nature 276:565–570.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J., 1989, Genes and segmentation, Nature 341:382–383.

    Article  PubMed  CAS  Google Scholar 

  • Li, W. H., 1983, Evolution of duplicate genes and pseudogenes, in: Evolution of Genes and Proteins (M. Nei and R. Koehn, eds.), Sinauer, Sunderland, p. 14.

    Google Scholar 

  • Lund, J., Lund, R., Hendrickson, A., Bunt, A., and Fuchs, A., 1975, The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase, J. Comp. Neurol. 164:287–305.

    Article  PubMed  CAS  Google Scholar 

  • MacArthur, R., and Wilson, E., 1967, The Theory of Island Biogeography, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • MacDonald, P. M., and Struhl, G., 1986, A molecular gradient in early Drosophila embryos and its role in specifying the body pattern, Nature 324:537–545.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G., Boncinelli, E., Duboule, D., Gruss, P., Jackson, I., Krumlauf, R., Lonai, P., McGuinness, W., Ruddle, F., and Wolgemuth, D., 1987, Nomenclature for homeobox-containing genes, Nature 325:31–32.

    Article  Google Scholar 

  • Maunsell, J., and Van Essen, D., 1983, The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey, J. Neurosci. 3:2563–2586.

    PubMed  CAS  Google Scholar 

  • Mazurskaya, P. Z., 1971, Study of the projection of the retina to the forebrain of the tortoise Emys orbicularis, J. Evol. Biochem. Physiol. 7:532–536. (English translation).

    Google Scholar 

  • Mazurskaya, P. Z., 1972, Organization of the neuronal receptive fields of the tortoise Emys orbicularis forebrain cortex, J. Evol. Biochem. Physiol. 8:550–555.

    Google Scholar 

  • McConnell, S. K., 1988, Development and decision-making in the mammalian cerebral cortex, Brain Res. Rev. 13:1–23.

    Article  Google Scholar 

  • McGinnis, W., 1985, Homeo box sequences of the antennapedia class are conserved only in higher animal genomes, Cold Spring Harbor Symp. Quant. Biol. 50:263–270.

    Article  PubMed  CAS  Google Scholar 

  • McGinnis, W., Garber, H., Wirz, H., Kuroiwa, A., and Gehring, W., 1984, A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans, Cell 37:403–408.

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt, H., 1982, Models of Biological Pattern Formation, Academic Press, New York.

    Google Scholar 

  • Merzenich, M. M., Recanzone, G., Jenkins, W. M., Allard, T. T., and Nudo, R. J., 1988, Cortical representational plasticity, in: Neurobiology of Neocortex (P. Rakic and W. Singer, eds.), Wiley, New York, pp. 41–68.

    Google Scholar 

  • Morgane, P., Jacobs, M., and Galaburda, A., 1986, Evolutionary morphology of the dolphin brain, in: Dolphin Cognition and Behavior: A Comparative Approach (R. Schusterman, J. Thomas, and F. Wood, eds.), Erlbaum, Hillsdale, N.J., pp. 5–30.

    Google Scholar 

  • Muller, E., 1985, Basal metabolic rates in primates—The possible role of phylogenetic and ecological factors, Comp. Biochem. Physiol. 81A:707–711.

    Article  Google Scholar 

  • Odenwald, W., Taylor, C., Palmer-Hill, F., Freidrich, V., Tani, M., and Lazzarini, R., 1987, Expression of a homeo domain protein in noncontact-inhibited cultured cells and postmitotic neurons, Genes Dev. 1:482–496.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., 1970, Evolution by Gene Duplication, Springer, Berlin.

    Google Scholar 

  • Pandya, D., Seltzer, B., and Barbas, H., 1988, Input-output relations in primate cerebral cortex, in: Comparative Primate Biology: Neurosciences (H. Steklis and J. Erwin, eds.), Liss, New York, pp. 39–80.

    Google Scholar 

  • Pettigrew, J., 1979, Binocular visual processing of the owl’s telencephalon, Proc. R. Soc. London Ser. B 204:435–454.

    Article  CAS  Google Scholar 

  • Pinto-Lord, M., Evrard, P., and Caviness, V., 1982, Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: A Golgi-EM analysis, Dev. Brain Res. 4:379–393.

    Article  Google Scholar 

  • Polyak, S., 1932, The Main Afferent Fiber Systems of the Cerebral Cortex in Primates, University of California Press, Berkeley.

    Google Scholar 

  • Radinsky, L., 1967, The oldest primate endocast. Am. J. Phys. Anthropol. 27:385–388.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., 1988, Specification of cerebral cortical areas, Science 241:170–176.

    Article  PubMed  CAS  Google Scholar 

  • Rakic, P., Bourgeois, J.-P., Eckenhoff, M., Zecevic, N., and Goldman-Rakic, P., 1986, Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex, Science 232:232–235.

    Article  PubMed  CAS  Google Scholar 

  • Rockel, A., Hiornes, R., and Powell, T., 1980, The basic uniformity in structure of the neocortex, Brain 103:221–244.

    Article  PubMed  CAS  Google Scholar 

  • Rockland, K., and Pandya, D., 1979, Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey, Brain Res. 179:3–20.

    Article  PubMed  CAS  Google Scholar 

  • Sanides, F., 1970, Functional architecture of motor and sensory cortices in primates in light of a new concept of neocortical evolution, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), Appleton-Century-Crofts, New York, pp. 137–208.

    Google Scholar 

  • Scott, M., 1984, Homeotic gene transcripts in the neural tissue of insects, Trends Neurosci. 7:221–223.

    Article  Google Scholar 

  • Scott, M., and Carroll, S., 1987, The segmentation and homeotic gene network in early drosophila development, Cell 51:689–698.

    Article  PubMed  CAS  Google Scholar 

  • Sereno, M., and Allman, J., 1990, Cortical and visual areas in mammals, in: Neural Basis of Visual Function (A. Levinthal, ed.), MacMillan, London, in press.

    Google Scholar 

  • Shepherd, G. M., and Brayton, R. K., 1987, Logic operations are properties of computer-simulated interactions between excitable dendritic spines, Neuroscience 21:151–165.

    Article  PubMed  CAS  Google Scholar 

  • Sousa, A., Gattass, R., and Oswaldo-Cruz, E., 1978, The projection of the opossum’s visual field on the cerebral cortex, J. Comp. Neurol. 177:569–588.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, H., and Andy, O. J., 1970, The allocortex in primates, in: The Primate Brain (C. R. Noback and W. Montagna, eds.), Appleton-Century-Crofts, New York, pp. 109–135.

    Google Scholar 

  • Tigges, J., Tigges, M., and Perachio, A., 1977, Complementary laminar terminations of afferents to area 17 originating in area 18 and the lateral geniculate nucleus in squirrel monkey, J. Comp. Neurol. 176:87–100.

    Article  PubMed  CAS  Google Scholar 

  • Turing, A., 1952, The chemical basis of morphogenesis, Trans R. Soc. London Ser. B 237:37–72.

    Article  Google Scholar 

  • Tusa, R., Palmer, L., and Rosenquist, A., 1981, Multiple cortical visual areas: visual field topography in the cat, in: Multiple Visual Areas (C. Woolsey, ed.), Humana Press, Clifton, N.J., pp. 1–32.

    Chapter  Google Scholar 

  • Ulinski, P., 1983, Dorsal ventricular Ridge, Wiley, New York.

    Google Scholar 

  • Ulinski, P. S., 1986, Neurobiology of the therapsid-mammal transition, in: The Ecology and Biology of Mammal-like Reptiles (N. Hotton, P. MacLean, J. Roth, and E. Roth, eds.), Smithsonian Institution, Washington, D.C., pp. 149–171.

    Google Scholar 

  • Ulinski, P. S., 1988, Functional architecture of turtle visual cortex, in: Forebrain in Reptiles (W Schwerdtfeger and W. Smeets, eds.), Karger, Basel, pp. 151–161.

    Google Scholar 

  • Van Essen, D., 1979, Visual cortical areas, Annu. Rev. Neurosci. 2:227–263.

    Article  PubMed  Google Scholar 

  • Van Essen, D., 1985, Functional organization of primate visual cortex, in: Cerebral Cortex, Volume 3 (E. Jones, ed.), Plenum Press, New York, pp. 259–329.

    Google Scholar 

  • Wilson, E., 1975, Sociobiology, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Wilkinson, D., Bhatt, S., Cook, M., Boncinelli, E., and Krumlauf, R., 1989, Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain, Nature 341:405–409.

    Article  PubMed  CAS  Google Scholar 

  • Zeki, S., 1983, Colour coding in the cerebral cortex: The reaction of cells in monkey visual cortex to wavelength and colours, Neuroscience 9:741–765.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Allman, J. (1990). Evolution of Neocortex. In: Jones, E.G., Peters, A. (eds) Comparative Structure and Evolution of Cerebral Cortex, Part I. Cerebral Cortex, vol 8A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9622-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9622-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9624-7

  • Online ISBN: 978-1-4757-9622-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics