Neurobiology of the Reptile—Bird Transition

  • Philip S. Ulinski
  • Daniel Margoliash
Part of the Cerebral Cortex book series (CECO, volume 8A)


Birds evolved from archosaurian reptiles during the Mesozoic era, between 230 and 65 million years ago. The archosaurs, or “ruling” reptiles, dominated the terrestrial fauna throughout the Mesozoic. They include several evolutionary lineages of which the dinosaurs, the pterosaurs or flying reptiles, and the various lineages of crocodilians are the most important. Which particular group of archosaurs gave rise to birds has been a matter of controversy. Heilmann (1926) suggested that birds evolved from the protosuchians, a group of archosaurs related to crocodilians. Ostrom (1976) reexamined the evidence related to the origin of birds and suggested they evolved from small, bipedal dinosaurs. This view now is widely accepted by paleontologists (see Feduccia, 1980; Hecht et al., 1985). The conclusion that birds are derived from some group of archosaurian reptiles comes from detailed comparisons of the skeletal anatomy of the earliest fossil bird, Archaeopteryx lithographica, with members of the various groups of archosaurs. Archaeopteryx was a pigeon-sized bird that lived in a barren or desert environment, as judged by the presence of cacti in the sediments near which some Archaeopteryx specimens were found (Viohl, 1985, 1990). Archaeopteryx is found in the upper Jurassic (the second of the three periods in the Mesozoic era), in sediments about 130 million years old.


Zebra Finch Interaural Time Difference Optic Tectum Guinea Fowl Dorsal Thalamus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamo, N. J., 1967, Connections of efferent fibers from hyperstriatal areas in chicken, raven and African lovebird, J. Comp. Nenrol. 131:337–356.Google Scholar
  2. Alexander, R. M., 1989, Dynamics of Dinosaurs and Other Extinct Giants, Columbia University Press, New York.Google Scholar
  3. Alvarez-Buylla, A., Theelan, M., and Nottebohm, F., 1988, Birth of projection neurons in higher vocal centers of the canary forebrain before, during, and after song learning, Proc. Natl Acad. Sci. USA 85:8722–8726.PubMedGoogle Scholar
  4. Arends, J. J. A., and Dubbeldam, J. L., 1984, The subnuclei and primary afferents of the descending trigeminal system in the mallard (Anas platyrhynchos), Neuroscience 13:781–795.PubMedGoogle Scholar
  5. Arends, J. J. A., and Zeigler, H. P., 1989, Cerebellar connections of the trigeminal system in the pigeon (Columba livia), Brain Res. 487:69–78.PubMedGoogle Scholar
  6. Arends, J. J. A., Woelders-Blok, A., and Dubbeldam, J., 1984, The efferent connections of the nuclei of the descending trigeminal tract in the mallard (Anas platyrhynchos), Neuroscience 13:797–817.PubMedGoogle Scholar
  7. Ariëns Kappers, C. U., 1921, Vergleichende Anatomie des Nervensystems, Bohn, Haarlem.Google Scholar
  8. Ariëns Kappers, C. U., Huber, G. C., and Crosby, E. C., 1936, The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, MacMillan, New York.Google Scholar
  9. Armstrong, E., and Bergeron, R., 1985, Relative brain size and metabolism in birds, Brain Behav. Evol. 26:141–153.PubMedGoogle Scholar
  10. Armstrong, R. C., and Clarke, P. G. H., 1979, Neuronal death and the development of the pontine nuclei and inferior olive in the chick, Neuroscience 4:1635–1647.PubMedGoogle Scholar
  11. Arnold, A., Nottebohm, F., and Pfaff, D. W., 1976, Hormone concentrating cells in vocal control and other areas of the brain of the zebra finch (Poephila guttata), J. Comp. Neurol. 165:487–512.PubMedGoogle Scholar
  12. Bagnoli, P., and Burkhalter, A., 1983, Organization of the afferent projections to the Wulst in the pigeon, J. Comp. Neurol. 214:103–113.PubMedGoogle Scholar
  13. Bagnoli, P., Francesconi, W., and Magni, F., 1979, Interaction of optic tract and visual Wulst impulses on single units of the pigeon’s optic tectum, Brain Behav. Evol. 16:19–37.PubMedGoogle Scholar
  14. Bagnoli, P., Grassi, S., and Magni, F., 1980, A direct connection between visual Wulst and tectum opticum in the pigeon (Columba livia) demonstrated by horseradish peroxidase, Arch. Ital. Biol. 118:72–88.PubMedGoogle Scholar
  15. Baker, M. C., Bottjer, S. W., and Arnold, A. P., 1984, Sexual dimorphism and lack of seasonal changes in vocal control regions of the white-crowned sparrow brain, Brain Res. 295:85–89.PubMedGoogle Scholar
  16. Bakker, R. T., 1968, The superiority of dinosaurs, Discovery, New Haven 3:11–22.Google Scholar
  17. Bakker, R. T., 1986, The Dinosaur Heresies, Morrow, New York.Google Scholar
  18. Baptista, L. F., and Schuchmann, K.-L., 1989, Song learning in the Anna hummingbird (Calypte anna), Ethology 84:15–26.Google Scholar
  19. Bell, P. M., Margoliash, D., and Ulinski, P. S., 1989, Cytoarchitecture and differential projections of nucleus ovoidalis in the zebra finch, Poephila guttata, Soc. Neurosci. Abstr. 15:617.Google Scholar
  20. Benowitz, L., 1980, Functional organization of the avian telencephalon, in: Comparative Neurology of the Telencephalon (S. O. E. Ebbesson, ed.), Plenum Press, New York, pp. 389–421.Google Scholar
  21. Benowitz, L. I., and Karten, H. J., 1976, The tractus infundibuli and other afferents to the parahippocampal region of the pigeon, Brain Res. 102:174–180.PubMedGoogle Scholar
  22. Berkhoudt, H., Dubbeldam, J. L., and Zeilstra, S., 1981, Studies on the somatotopy of the trigeminal system in the mallard, Anas platyrhynchos L. IV. Tactile representation in the nucleus basalis, J. Comp. Neurol. 196:407–420.PubMedGoogle Scholar
  23. Bingman, V. P., Bagnoli, P., Ioloa, P., and Gasini, G., 1984, Homing behavior of pigeons after telencephalic ablations, Brain Behav. Evol. 24:94–108.PubMedGoogle Scholar
  24. Bingman, V. P., Ioale, P., Casini, G., and Bagnoli, P., 1985, Dorsomedial forebrain ablations and home loft association behaviors in homing pigeons, Brain Behav. Evol. 26:1–9.PubMedGoogle Scholar
  25. Bloch, S., and Mantinoya, C., 1982, Comparing frontal and lateral viewing in the pigeon. I. Tachistoscopic visual acuity as a function of distance, Behav. Brain Res. 5:221–244.Google Scholar
  26. Bloch, S., Rey, J., and Mantinoya, C., 1984, Visual acuity as a function of distance for frontal and lateral viewing in the pigeon. III. Different patterns of eye movements for binocular and monocular fixation, Behav. Brain Res. 13:56–61.Google Scholar
  27. Bonke, B. A., Bonke, D., and Scheich, H., 1979, Connectivity of the auditory forebrain nuclei in the guinea fowl (Numida meleagris), Cell Tissue Res. 200:101–121.PubMedGoogle Scholar
  28. Bonke, D., Scheich, H., and Langner, G., 1979, Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. I. Tonotopy and functional zones, J. Comp. Physiol. 132:243–255.Google Scholar
  29. Bons, N., Bouille, C., Bayle, J. D., and Assenmacher, I., 1976, Light and electron microscopic evidence of hypothalamic afferences originating from the hippocampus in the pigeon, Experientia 32:1443–14451.PubMedGoogle Scholar
  30. Bottjer, S. W., and Dignan, T. P., 1988, Joint hormonal and sensory stimulation modulate neuronal number in adult canary brains, J. Neurobiol. 19:624–635.PubMedGoogle Scholar
  31. Bottjer, S. W., Miesner, E. A., and Arnold, A. P., 1984, Forebrain lesions disrupt development but not maintenance of song in passerine birds, Science 224:910–903.Google Scholar
  32. Bottjer, S. W., Glaessuer, S. L., and Arnold, A. P., 1985, Ontogeny of brain nuclei controlling song learning and behavior in zebra finches, J. Neurosci. 6:1556–1562.Google Scholar
  33. Bottjer, S. W., Schoonmaker, J. N., and Arnold, A. P., 1986, auditory and hormonal stimulation interact to produce neural growth in adult canary, J. Neurobiol. 17:605–612.PubMedGoogle Scholar
  34. Bottjer, S. W., Halseman, K. A., Brown, S. A., and Miesner, E. A., 1989, Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches, J. Comp. Neurol. 279:312–326.PubMedGoogle Scholar
  35. Brauth, S. E., 1987, Motor functions of the caiman basal ganglia, Soc. Neurosci. Abstr. 13:978.Google Scholar
  36. Brauth, S. E., 1988, Catecholamine neurons in the brainstem of the reptile Caiman crocodilus, J. Comp. Neurol. 270:313–326.PubMedGoogle Scholar
  37. Brauth, S. E., and Karten, H. J., 1977, Direct accessory optic projections to the vestibulo-cerebellum: A possible channel for oculomotor control systems, Exp. Brain Res. 28:73–84.PubMedGoogle Scholar
  38. Brauth, S. E., and McHale, C. M., 1988, Auditory pathways in budgerigar. II. Intratelencephalic pathways, Brain Behav. Evol. 32:193–207.PubMedGoogle Scholar
  39. Brauth, S. E., Ferguson, J. L., and Kitt, C. A., 1978, Prosencephalic pathways related to the paleostriatum of the pigeon (Columba livia), Brain Res. 147:205–221.PubMedGoogle Scholar
  40. Brauth, S. E., Kitt, C. A., Reiner, A., and Quiron, R., 1986, Neurotensin binding sites in the forebrain and midbrain of the pigeon, J. Comp. Neurol. 253:358–373.PubMedGoogle Scholar
  41. Brauth, S. E., McHale, C. M., Brasher, C. A., and Dooling, R. J., 1987, Auditory pathways in the budgerigar. I. Thalamo-telencephalic projections, Brain Behav. Evol. 30:174–199.PubMedGoogle Scholar
  42. Bravo, H., and Pettigrew, J. D., 1981, The distribution of neurons projecting from retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and the burrowing owl, Speotyto cunnicularia, J. Comp. Neurol. 199:418–441.Google Scholar
  43. Brenowitz, E. A., and Arnold, A. P., 1986, Interspecific comparisons of the size of neural song control regions and song complexity in duetting birds: Evolutionary implication, J. Neurosci. 6:2875–2879.PubMedGoogle Scholar
  44. Brenowitz, E. A., Kroodsma, D., Nails, B., and Wingfield, J., 1989, Seasonal changes in avain song control nuclei without seasonal changes in song repertoires, Soc. Neurosci. Abstr. 15:619.Google Scholar
  45. Brodai, A., Kristiansen, K., and Jansen, J., 1950, Experimental demonstration of a pontine homologue in birds, J. Comp. Neurol. 92:23–69.Google Scholar
  46. Bruce, L. L., and Butler, A. B., 1984, Telencephalic connections in lizards. I. Projections to cortex, J. Comp. Neurol. 229:585–601.PubMedGoogle Scholar
  47. Bugbee, N., 1979, The effect of bilateral lesions in the nucleus spiriformis lateralis on visually guided behavior in the pigeon, Ph.D. thesis, University of Maryland.Google Scholar
  48. Bugbee, N. M., and Hodos, W., 1979, The basal ganglia-tectal pathway: Its role in visually guided behavior in the pigeon, Soc. Neurosci. Abstr. 5:68.Google Scholar
  49. Burd, G. D., and Nottebohm, F., 1985, Ultrastructural characterization of synaptic terminals formed on newly-generated neurons in a song control nucleus of the adult canary forebrain, J. Comp. Neurol. 240:143–152.PubMedGoogle Scholar
  50. Cabot, J. B., Reiner, A., and Bogan, N., 1982, Avian bulbospinal pathways: Anterograde and retrograde studies of cells of origin, funicular trajectories and laminar terminations, Prog. Brain Res. 57:79–108.PubMedGoogle Scholar
  51. Canady, R. A., Kroodsma, D. E., and Nottebohm, F., 1984, Population differences in complexity of a learned skill are correlated with the brain space involved, Proc. Natl. Acad. Sci. USA 81:6232–6234.PubMedGoogle Scholar
  52. Canady, R. A., Burd, G. D., DeVoogd, T. J., and Nottebohm, F., 1988, Effect of testosterone on input received by an identified neuron type of the canary song system: A Golgi/electron microscopy/degeneration study, J. Neurosci. 8:3770–3784.PubMedGoogle Scholar
  53. Carr, C. E., and Konishi, M., 1988, Axonal delay lines for time measurement in the owl’s brainstem, Proc. Natl. Acad. Sa. USA 85:8311–8315.Google Scholar
  54. Clark, J. M., and Ulinski, P. S., 1984, A Golgi study of anterior dorsal ventricular ridge in the alligator, Alligator mississippiensis, J. Morphol. 179:153–174.Google Scholar
  55. Clarke, P. G. H., 1977, Some visual and other connections to the cerebellum of the pigeon, J. Comp. Neurol. 174:535–552.PubMedGoogle Scholar
  56. Clower, R. P., DeVoogd, T. J., and Nixdorf, B., 1989, Synaptic plasticity in the hypoglossal nucleus of female canaries: Structural correlates of season, hemisphere, and testosterone treatment, Behav. Neural Biol. 52:63–77.PubMedGoogle Scholar
  57. Cobb, S., 1960a, A note on the size of the avian olfactory bulb, Epilepsia 1:394–402.PubMedGoogle Scholar
  58. Cobb, S., 1960b, Observations on the comparative anatomy of the avian brain, Perspec. Biol. Med. 3:383–408.Google Scholar
  59. Cohen, D., and Karten, H. J., 1974, The structural organization of avian brain: An overview, in Birds, Brain and Behavior (I. J. Goodman and M. Schein, eds.), Academic Press, New York, pp. 29–73.Google Scholar
  60. Coles, R. B., and Guppy, A., 1988, Directional hearing in the barn owl (Tyto alba), J. Comp. Physiol. 163:117–133.Google Scholar
  61. Coles, R. B., Lewis, D. B., Hill, K. G., Hutchings, M. E., and Gower, D. M., 1980, Directional hearing in the Japanese quail (Coturnix coturnix japonica). II. Cochlear physiology, J. Exp. Biol. 86:153–170.Google Scholar
  62. Cowan, W. M., Adamson, L., and Powell, T. P. S., 1961, An experimental study of the avian visual system, J. Anat. 95:545–563.PubMedGoogle Scholar
  63. Cracraft, J., 1986, The origin and early diversification of birds, Paleobiology 12:383–399.Google Scholar
  64. Cracraft, J., 1988, Early evolution of birds, Nature 331:389–390.Google Scholar
  65. Craigie, E. H., 1928, Observations on the brain of the humming bird (Chrysolampis mosquitus Linn. and Chlorostilbon caribaeus Lawr.), J. Comp. Neurol. 45:377–481.Google Scholar
  66. Craigie, E. H., 1932, The cell structure of the cerebral hemisphere in the humming bird, J. Comp. Neurol. 56:135–168.Google Scholar
  67. Craigie, E. H., 1935, The cerebral hemispheres of the kiwi and emu (Apteryx and Dromiceius), J. Anat. 69:380–393.PubMedGoogle Scholar
  68. Craigie, E. H., 1936, The cerebral cortex of the ostrich (Struthio), J. Comp. Neurol. 64:389–415.Google Scholar
  69. Craigie, E. H., 1939, The cerebral cortex of Rhea americana, J. Comp. Neurol. 70:331–353.Google Scholar
  70. Craigie, E. H., 1940a, The cerebral cortex in some tinamidae, J. Comp. Neurol. 72:299–328.Google Scholar
  71. Craigie, E. H., 1940b, The cerebral cortex in paleognathine and neognathine birds, J. Comp. Neurol. 73:179–234.Google Scholar
  72. Csillag, A., Stewart, M. G., and Curtis, E. M., 1987, GABAergic structures in the chick telencephalon: GABA immunohistochemistry combined with light and electron microscope autoradiography, and Golgi impregnation, Brain Res. 437:283–297.PubMedGoogle Scholar
  73. Csillag, A., Bourne, R. C., Patel, N., Stewart, M. G., and Tombol, T., 1989, Localization of GABA-like immunoreactivity in the ectostriatum of domestic chicks: GABA immunocytochemistry combined with Golgi impregnation, J. Neurocytol. 18:369–379.PubMedGoogle Scholar
  74. De Britto, L. R. G., Brunelli, M., Francesconi, W., and Magni, F., 1975, Visual response pattern of thalamic neurons in the pigeon, Brain Res. 97:337–343.PubMedGoogle Scholar
  75. Dechaseaux, C., 1968, Le cerveau d’Archaeopteryx est-il de “type reptilien”? C.R. Acad. Sci. Ser. D 267:2108–2110.Google Scholar
  76. Deich, J. R., Klein, B. G., and Zeigler, H. P., 1985, Grasping in the pigeon: Mechanisms of motor control, Brain Res. 337:362–367.PubMedGoogle Scholar
  77. Delius, J. D., and Bennetto, K., 1972, Cutaneous sensory projections to the avian forebrain, Brain Res. 37:205–221.PubMedGoogle Scholar
  78. Denton, C. J., 1981, Topography of the hyperstriatal visual projection area in the young domestic chicken, Exp. Neurol. 74:482–498.PubMedGoogle Scholar
  79. DeVoogd, T. J., and Nottebohm, F., 1981, Sex differences in dendritic morphology of a song control nucleus in the canary: A quantitative Golgi study, J. Comp. Neurol. 196:309–316.PubMedGoogle Scholar
  80. DeVoogd, T. J., Nixdorf, B., and Nottebohm, F., 1985, Synaptogenesis and changes in synaptic morphology related to acquisition of a new behavior, Brain Res. 329:304–308.PubMedGoogle Scholar
  81. DeVoogd, T. J., Brenowitz, E. A., and Arnold, A. P., 1988, Small sex differences in song control dendrites are associated with minimal differences in song capacity, J. Neurobiol. 19:199–209.PubMedGoogle Scholar
  82. Dial, K. P., Kaplan, S. R., Goslow, G. E., Jr., and Jenkins, F. A., Jr., 1988, A functional analysis of the primary upstroke and downstroke muscles in the domestic pigeon (Columba livid) during flight, J. Exp. Biol. 134:1–16.PubMedGoogle Scholar
  83. Dooling, R. J., Gephart, B. F., Price, P. H., McHale, C., and Brauth, S. E., 1987, Effects of deafening on the contact call of the budgerigar, Melopsittacus undulatus, Anim. Behav. 35:1264–1266.Google Scholar
  84. Dubbeldam, J. L., 1980, Studies on the somatotopy of the trigeminal system in the mallard, Anas platyrhynchos L. II. Morphology of the principal sensory nucleus, J. Comp. Neurol. 191:557–571.PubMedGoogle Scholar
  85. Dubbeldam, J. L., 1984, Brainstem mechanisms for feeding in birds: Interaction or plasticity, Brain Behav. Evol. 25:85–98.PubMedGoogle Scholar
  86. Dubbeldam, J. L., and Wijsman, J. P. M., 1975, The ascending projections of the principal sensory trigeminal nucleus in the mallard (Anas platyrhynchos), Acta Morphol. Neerl. Scand. 13:230–231.PubMedGoogle Scholar
  87. Dubbeldam, J. L., Brauch, C. S. M., and Don, A., 1981, Studies on the somatotopy of the trigeminal system in the mallard, Anas platyrhynchos L. III. Afferents and organization of the nucleus basalis, J. Comp. Neurol. 196:391–405.PubMedGoogle Scholar
  88. Dube, L., and Parent, A., 1981, The monoamine-containing neurons in avian brain: I. A study of the brainstem of the chicken (Gallus domesticus) by means of fluorescence and acetylcholinesterase histochemistry, J. Comp. Neurol. 196:695–708.PubMedGoogle Scholar
  89. Edinger, T., 1926, The brain of Archaeopteryx, Ann. Mag. Nat. Hist. 18:151–156.Google Scholar
  90. Eldredge, N., and Cracraft, J., 1980, Phylogenetic Patterns and the Evolutionary Process, Columbia University Press, New York.Google Scholar
  91. Elprana, D., Wouterlood, F. G., and Alones, V. E., 1980, A corticotectal projection in the lizard Agama agama, Neurosci. Lett. 18:251–256.PubMedGoogle Scholar
  92. Feduccia, A., 1980, The Age of Birds, Harvard University Press, Cambridge, Mass.Google Scholar
  93. Feduccia, A., and Tordoff, H. B., 1979, Feathers of Archaeopteryx: Asymmetric vanes indicate aerodynamic function, Science 203:1021–1022.PubMedGoogle Scholar
  94. Fortune, E. S., and Margoliash, D., 1989, Combination-sensitive neurons in the zebra finch’s HVc, Soc. Neurosci. Abstr. 15:617.Google Scholar
  95. Freedman, S. L., Voogd, J., and Vielvoyie, G. J., 1977, Experimental evidence for climbing fibers in the avian cerebellum, J. Comp. Neurol. 175:243–252.PubMedGoogle Scholar
  96. Funk, G. D., Milsom, W. K., Sholomenko, G. N., and Steeves, J. D., 1989, Role of the telencephalon in the synchronization of locomotor and respiratory frequencies during walking in Canada geese, J. Exp. Biol. in press.Google Scholar
  97. Furber, S. E., 1983, The organization of the olivocerebellar projection in the chicken, Brain Behav. Evol. 22:198–211.PubMedGoogle Scholar
  98. Gahr, M., 1990, The delineation of a bird nucleus: Comparisons of cytochemical, hodological, and cytoarchitectural views of the song control nucleus HVc of the adult canary, J. Comp. Neurol. 294:30–36.PubMedGoogle Scholar
  99. Gahr, M., and Konishi, M., 1988, Developmental changes in estrogen-sensitive neurons in the forebrain of the zebra finch, Proc. Natl. Acad. Sci. USA 85:7380–7383.PubMedGoogle Scholar
  100. Gahr, M., Flügge, F., and Güttinger, H.-R, 1987, Immunocytochemical localization of estrogenbinding neurons in the songbird brain, Brain Res. 402:173–177.PubMedGoogle Scholar
  101. Gamlin, P. D. R., and Cohen, D. H., 1986, A second ascending visual pathway from the optic tectum to the telencephalon in the pigeon (Columba livia), J. Comp. Neurol. 250:296–310.PubMedGoogle Scholar
  102. Gamlin, P. D. R., and Cohen, D. H., 1988, Projections of the retinorecipient pretectal nuclei in the pigeon (Columba livid), J. Comp. Neurol. 269:18–46.PubMedGoogle Scholar
  103. Gaunt, A. S., and Gaunt, S. L. L., 1985, Syringeal structure and avian phonation, in: Current Ornithology, Volume 2 (R. F. Johnston, ed.), Plenum Press, New York, pp. 213–245.Google Scholar
  104. Goldman, S. A., and Nottebohm, F., 1983, Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain, Proc. Natl. Acad. Sci. USA 80:2390–2394.PubMedGoogle Scholar
  105. Goodale, M. A., 1983, Visually guided pecking in the pigeon (Columba livid), Brain Behav. Evol. 22:22–41.PubMedGoogle Scholar
  106. Goodman, I. J., and Schein, M. W., 1974, Birds: Brain and Behavior, Academic Press, New York.Google Scholar
  107. Goslow, G. E., Jr., Dial, K. P., and Jenkins, F. A., Jr., 1989, The avian shoulder: An experimental approach, Am. Zool. 29:287–301.Google Scholar
  108. Granada, A. M., and Maxwell, J. H., 1979, Neural Mechanisms of Behavior in the Pigeon, Plenum Press, New York.Google Scholar
  109. Greenewalt, C. H., 1968, Bird Song: Acoustics and Physiology, Smithsonian Institute Press, Washington, D.C.Google Scholar
  110. Gurney, M. E., 1980, Sexual Differentiation of Brain and Behavior in the Zebra Finch (Poephila guttata): A Cellular Analysis, Ph.D. thesis, California Institute of Technology.Google Scholar
  111. Gurney, M. E., 1981, Hormonal control of cell form and number in the zebra finch song system, J. Neurosci. 1:658–673.PubMedGoogle Scholar
  112. Gurney, M. E., 1982, Behavioral correlates of sexual differentiation in the zebra finch song system, Brain Res. 231:153–172.PubMedGoogle Scholar
  113. Hamdi, F. A., and Whiteridge, D., 1954, The representation of the retina on the optic tectum of the pigeon, Q.J. Exp. Physiol. 39:111–119.PubMedGoogle Scholar
  114. Harkmark, W., 1954, Cell migrations from the rhombic lip to the inferior olive, the nucleus raphe and the pons. A morphological and experimental investigation in chick embryos, J. Comp. Neurol. 100:115–209.PubMedGoogle Scholar
  115. Hartley, R. S., and Suthers, R. A., 1989, Airflow and pressure during canary song: Direct evidence of mini-breaths, J. Comp. Physiol. 165:15–26.Google Scholar
  116. Hecht, M. K., Ostrom, J. H., Viohl, G., and Wellnhofer, P., 1985, The Beginnings of Birds, Freunde Des Jura-Museums Eichstatt, Eichstatt.Google Scholar
  117. Heil, P., and Scheich, H., 1985, Quantitative analysis and two-dimensional reconstruction of the tonotopic organization of the auditory field L in the chick from 2-deoxyglucose data, Exp. Brain Res. 58:532–543.PubMedGoogle Scholar
  118. Heilmann, G., 1926, The Origin of Birds, Appleton, New York.Google Scholar
  119. Hill, K. G., Lewis, D. B., Hutchings, M. E., and Coles, R. B., 1980, Directional hearing in the Japanese quail (Coturnix coturnix japonica). I. Acoustic properties of the auditory system, J. Exp. Biol. 86:135–151.Google Scholar
  120. Hodos, W., 1976, Vision and the visual system: A bird’s eye view, in: Progress in Psychobiology and Physiological Psychology (J. M. Sprague and A. N. Epstein, eds.), Academic Press, New York, pp. 29–62.Google Scholar
  121. Hodos, W., and Bonbright, J. C., Jr., 1974, Intensity difference thresholds in pigeons after lesions of the tectofugal and thalamofugal visual pathway, J. Comp. Physiol. Psychol. 87:1013–1031.PubMedGoogle Scholar
  122. Hodos, W., and Karten, H. J., 1970, Visual intensity and pattern discrimination deficits after lesions of ectostriatum in pigeons, J. Comp. Neurol. 140:53–68.PubMedGoogle Scholar
  123. Hodos, W., Karten, H. J., and Bonbright, J. C., Jr., 1973, Visual intensity and pattern discrimination after lesions of the thalamofugal visual pathway in pigeons, J. Comp. Neurol. 148:447–468.PubMedGoogle Scholar
  124. Hoogland, P. V., 1977, Efferent connections of the striatum in Tupinambis nigropunctatus, J. Morphol. 152:229–246.PubMedGoogle Scholar
  125. Hopson, J. A., 1975, The evolution of cranial display structures in hadrosaurian dinosaurs, Paleobiology 1:21–43.Google Scholar
  126. Hopson, J. A., 1977, Relative brain size and behavior in archosaurian reptiles, Annu. Rev. Ecol. Syst. 8:429–448.Google Scholar
  127. Hopson, J. A., 1979, Paleoneurology, in: Biology of the Reptilia, Volume 9 (C. C. Gans, R. G. Northcutt and P. S. Ulinski, eds.), Academic Press, New York, pp. 39–146.Google Scholar
  128. Hunt, R. H., 1975, Maternal behavior in the Morelet’s crocodile, Crocodylus moreleti, Copeia 1975:763–764.Google Scholar
  129. Hunt, S. P., and Brecha, N., 1984, The avian optic tectum: A synthesis of morphology and biochemistry, in: Comparative Neurology of the Optic Tectum (H. Vanegas, ed.), Plenum Press, New York, pp. 619–648.Google Scholar
  130. Hunt, S. P., and Kunzle, H., 1976, Observations on the projections and intrinsic organization of the pigeon optic tectum: An autoradiographic study based on anterograde and retrograde axonal and dendritic flow, J. Comp. Neurol. 170:153–172.PubMedGoogle Scholar
  131. Hunt, S. P., and Webster, K. E., 1972, Thalamo-hyperstriate interrelations in the pigeon, Brain Res. 44:647–651.PubMedGoogle Scholar
  132. Jacobson, R. D., and Hollyday, M., 1982a, A behavioral and electromyographic study of walking in the chick, J. Neurophysiol. 48:238–256.PubMedGoogle Scholar
  133. Jacobson, R. D., and Hollyday, M., 1982b, Electrically evoked walking and fictive locomotion in the chick, J. Neurophysiol. 48:257–270.PubMedGoogle Scholar
  134. Jassik-Gerschenfeld, D., Teulon, J., and Ropert, N., 1976, Visual receptive field types in the nucleus dorsolateralis anterior of the pigeon’s thalamus, Brain Res. 108:295–306.PubMedGoogle Scholar
  135. Jeffress, L. A., 1948, A place theory of sound localization, J. Comp. Physiol. Psychol. 41:35–39.PubMedGoogle Scholar
  136. Jenkins, F. A., Jr., Dial, K. P., and Goslow, G. E., Jr., 1988, A cineradiographic analysis of bird flight: The wishbone is a spring, Science 241:1495–1498.PubMedGoogle Scholar
  137. Jerison, H. J., 1968, Brain evolution and Archaeopteryx, Nature 219:1381–1382.PubMedGoogle Scholar
  138. Jerison, H. J., 1973, Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  139. Karten, H., 1968, The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami, Brain Res. 11:134–153.PubMedGoogle Scholar
  140. Karten, H. J., 1971, Efferent projections of the Wulst of the owl, Anat. Rec. 169:353.Google Scholar
  141. Karten, H. J., 1979, Visual lemniscal pathways in birds, in: Neural Mechanisms of Behavior in the Pigeon (A. M. Granda and J. H. Maxwell, eds.), Plenum Press, New York, pp. 409–430.Google Scholar
  142. Karten, H. J., and Dubbeldam, J. L., 1973, The organization and projections of the paleostriatal complex in the pigeon (Columba livia), J. Comp. Neurol. 148:61–89.PubMedGoogle Scholar
  143. Karten, H. J., and Hodos, W., 1967, A Stereotaxic Atlas of the Brain of the Pigeon (Columba livia), Johns Hopkins University Press, Baltimore.Google Scholar
  144. Karten, H. J., Hodos, W., Nauta, W. J. H., and Revzin, A. M., 1973, Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunnicularia), J. Comp. Neurol. 150:253–278.PubMedGoogle Scholar
  145. Karten, H. J., Fite, K. V., and Brecha, N., 1977, Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columba livia), Proc. Natl. Acad. Sci. USA 74:1753–1756.PubMedGoogle Scholar
  146. Karten, H. J., Konishi, M., and Pettigrew, J., 1978, Somatosensory representation in the anterior wulst of the owl (Speotyto cunnicularia), Soc. Neurosci, Abstr. 4:554.Google Scholar
  147. Katz, L. C., 1982, The avian motor system for song has multiple sites and types of auditory input, Soc. Neurosci. Abstr. 8:1021.Google Scholar
  148. Katz, L. C., and Gurney, M. E., 1981, Auditory responses in the zebra finch’s motor system for song, Brain Res. 211:192–197.Google Scholar
  149. Kavanau, J. L., 1987, Lovebirds, Cockatiels, Budgerigars: Behavior and Evolution, Science Software Systems, Los Angeles.Google Scholar
  150. Kazennikov, O. V., Selinov, V. A., Shik, M. L., and Yakokleva, G. V., 1980, The rhombencephalic “locomotor region” in turtles, Neurophysiology 12:251–257.Google Scholar
  151. Kelley, D. B., and Nottebohm, F., 1979, Projections of a telencephalic auditory nucleus—field L—in the canary, J. Comp. Neurol. 183:455–470.PubMedGoogle Scholar
  152. Kirn, J. R., Clower, R. P., Kroodsma, D. E., and DeVoogd, T. J., 1989, Song related brain regions in the red-winged blackbird are affected by sex and season but not repertoire size, J. Neurobiol. 20:139–163.PubMedGoogle Scholar
  153. Kitt, C. A., and Brauth, S. E., 1981, Projections of the paleostriatum upon the midbrain tegmentum in the pigeon, Neuroscience 6:1551–1566.PubMedGoogle Scholar
  154. Kitt, C. A., and Brauth, S. E., 1982, A paleostriatal-thalamic-telencephalic path in pigeons, Neuroscience 7:2735–2731.PubMedGoogle Scholar
  155. Kitt, C. A., and Brauth, S. E., 1986, Telencephalic projections from midbrain and isthmal cell groups. II. The nigral complex, J. Comp. Neurol. 247:92–110.PubMedGoogle Scholar
  156. Klein, B. G., Deich, J. D., and Zeigler, H. P., 1985, Grasping in the pigeon (Columba livia): Final common path mechanisms, J. Comp. Neurol. 241:180–190.Google Scholar
  157. Knudsen, E. I., 1980, Sound localization in birds, in: Comparative Studies of Hearing in Vertebrates (A. N. Popper and R. R. Fay, eds.), Springer-Verlag, Berlin, pp. 289–322.Google Scholar
  158. Knudsen, E. I., 1982, Auditory and visual maps of space in the optic tectum of the owl, J. Neurosci. 2:1177–1194.PubMedGoogle Scholar
  159. Knudsen, E. I., 1983a, Subdivisions of the inferior colliculus in the barn owl (Tyto alba), J. Comp. Neurol. 218:174–186.PubMedGoogle Scholar
  160. Knudsen, E. I., 1983b, Early auditory experience aligns the auditory map of space in the optic tectum of the barn owl, Science 222:939–942.PubMedGoogle Scholar
  161. Knudsen, E. I., 1988, Early blindness results in a degraded auditory map of space in the optic tectum of the barn own. Proc. Natl. Acad. Sci. USA 85:6211–6214.PubMedGoogle Scholar
  162. Knudsen, E. I., and Konishi, M., 1978a, Center-surround organization of auditory receptive fields in the owl, Science 202:778–780.PubMedGoogle Scholar
  163. Knudsen, E. I., and Konishi, M., 1978b, A neural map of auditory space in the barn owl, Science 200:795–797.PubMedGoogle Scholar
  164. Knudsen, E. I., and Konishi, M., 1978c, Space and frequency are represented separately in auditory midbrain of the owl, J. Neurophysiol. 41:870–884.PubMedGoogle Scholar
  165. Knudsen, E. I., and Konishi, M., 1979, Mechanisms of sound localization in the barn owl (Tyto alba), J. Comp. Physiol. 133:13–21.Google Scholar
  166. Knudsen, E. I., and Konishi, M., 1980, Monaural occlusion shifts receptive-field locations of auditory midbrain units in the owl, J. Neurophysiol. 44:687–695.PubMedGoogle Scholar
  167. Knudsen, E. I., Blasdel, G. G., and Konishi, M., 1979, Sound localization by the barn owl (Tyto alba) measured with the search coil technique, J. Comp. Physiol. 133:1–11.Google Scholar
  168. Knudsen, E. I., Esterly, S. D., and Knudsen, P. F., 1984a, Monaural occlusion alters sound localization during a sensitive period in the barn owl, J. Neurosci. 4:1001–1011.PubMedGoogle Scholar
  169. Knudsen, E. I., Knudsen, P. F., and Esterly, S. D., 1984b, A critical period for the recovery of sound localization accuracy following monaural occlusion in the barn owl, J. Neurosci. 4:1012–1020.PubMedGoogle Scholar
  170. Konishi, M., 1963, The role of auditory feedback in the vocal behavior of the domestic fowl, Z. Tierpsychol. 20:349–367.Google Scholar
  171. Konishi, M., 1964, Effects of deafening on song development in two species of juncos, Condor 66:85–102.Google Scholar
  172. Konishi, M., 1965a, Effects of deafening on song development in American robins and blackheaded grosbeaks, Z. Tierpsychol. 22:584–599.PubMedGoogle Scholar
  173. Konishi, M., 1965b, The role of auditory feedback in the control of vocalization in the white-crowned sparrow, Z. Tierpsychol. 22:770–783.PubMedGoogle Scholar
  174. Konishi, M., 1973, Locatable and nonlocatable acoustic signals for barn owls, Am. Nat. 107:775–785.Google Scholar
  175. Konishi, M., 1985, Birdsong: From behavior to neuron, Annu. Rev. Neurosci. 8:125–170.PubMedGoogle Scholar
  176. Konishi, M., and Akutagawa, E., 1981, Androgen increases protein synthesis within the avian brain vocal control system, Brain Res. 222:442–446.PubMedGoogle Scholar
  177. Konishi, M., and Akutagawa, E., 1985, Neuronal growth, atrophy, and death in a sexually dimorphic song nucleus in the zebra finch brain, Nature 315:145–147.PubMedGoogle Scholar
  178. Konishi, M., Sullivan, W. E., and Takahaski, T., 1985, The owl’s cochlear nuclei process different sound localization cues, J. Acoust. Soc. Am. 78:360–364.PubMedGoogle Scholar
  179. Kooy, F. H., 1917, The inferior olive in vertebrates, Folia Neuro-Biol. 10:205–369.Google Scholar
  180. Krayniak, P. F., and Siegel, A., 1978a, Efferent connections of the hippocampus and adjacent regions in the pigeon, Brain Behav. Evol. 15:372–388.PubMedGoogle Scholar
  181. Krayniak, P. F., and Siegel, A., 1978b, Efferent connections of the septal area in the pigeon, Brain Behav. Evol. 15:389–404.PubMedGoogle Scholar
  182. Kroodsma, D. E., 1984, Songs of the alder flycatcher (Empidonax alnorum) and willow flycatcher (Empidonax traillii) are innate, Auk 101:13–24.Google Scholar
  183. Kushlan, J. A., 1973, Observations on maternal behavior in the American alligator, Alligator mississippiensis, Herpetologica 29:256–257.Google Scholar
  184. Langner, G., Bonke, D., and Scheich, H., 1981, Neuronal discrimination of natural and synthetic vowels in field L of trained mynah birds, Exp. Brain Res. 43:11–24.PubMedGoogle Scholar
  185. Larsell, O., 1948, The development and subdivisions of the cerebellum of birds, J. Comp. Neurol. 89:123–190.PubMedGoogle Scholar
  186. Larsell, O., 1967, The Comparative Anatomy and Histology of the Cerebellum from Myxinoids through Birds, University of Minnesota, Minneapolis.Google Scholar
  187. Larsell, O., and Whitlock, D. G., 1952, Further observations on the cerebellum of birds, J. Comp. Neurol. 97:545–566.PubMedGoogle Scholar
  188. Lennard, P. R., and Stein, P. S. G., 1977, Swimming movements elicited by electrical stimulation of turtle spinal cord. I. Low spinal and intact preparations, J. Neurophysiol. 40:768–778.PubMedGoogle Scholar
  189. Leppelsack, H.-J., 1983, Analysis of song in the auditory pathway of song birds, in: Advances in Vertebrate Neuroethology (J. P. Ewert, R. R. Capranica, and D. J. Ingle, eds.), Plenum Press, New York, pp. 783–799.Google Scholar
  190. Leppelsack, H.-J., and Vogt, M., 1976, Responses of auditory neurons in the forebrain of song bird to stimulation with species-specific sounds, J. Comp. Physiol. 107:263–274.Google Scholar
  191. Lieberburg, I., and Nottebohm, F., 1979, High-affinity androgen binding proteins in syringeal tissues of songbirds, Gen. Comp. Endocrinol. 37:286–293.PubMedGoogle Scholar
  192. McCasland, J. S., 1983, Neuronal control of bird song production, Ph.D. thesis, California Institute of Technology.Google Scholar
  193. McCasland, J. S., 1987, Neuronal control of bird song production, J. Neurosci. 7:23–39.PubMedGoogle Scholar
  194. McCasland, J. S., and Konishi, M., 1981, Interaction between auditory and motor activities in an avian song control nucleus, Proc. Natl. Acad. Sci. USA 78:1815–1819.Google Scholar
  195. McKenna, O. C., and Wallman, J., 1985, Accessory optic system and pretectum of birds: Comparisons with those of other vertebrates, Brain Behav. Evol. 26:91–116.PubMedGoogle Scholar
  196. Maldonado, P. E., Maturana, H., and Varela, F. J., 1988, Frontal and lateral visual system in birds, Brain Behav. Evol. 32:57–62.PubMedGoogle Scholar
  197. Manley, G. A., Koppl, C., and Konishi, M., 1988, A neural map of interaural intensity differences in the brain stem of the barn owl, J. Neurosci. 8:2665–2676.PubMedGoogle Scholar
  198. Manogue, K. R., and Paton, J. A., 1982, Respiratory gating of activity in the avian vocal control system, Brain Res. 247:383–387.PubMedGoogle Scholar
  199. Mantinoya, C., Rivaud, S., and Bloch, S., 1983, Comparing frontal and lateral viewing in the pigeon. II. Velocity thresholds for movement discrimination, Behav. Brain Res. 8:375–358.Google Scholar
  200. Margoliash, D., 1983, Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow, J. Neurosci. 3:1039–1057.PubMedGoogle Scholar
  201. Margoliash, D., 1986, Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow, J. Neurosci. 6:1643–1661.PubMedGoogle Scholar
  202. Margoliash, D., 1987, Neural plasticity in birdsong learning, in: Imprinting and Cortical Plasticity (J. P. Rauschecker and P. Marier, eds.), Wiley, New York, pp. 23–54.Google Scholar
  203. Margoliash, D., and Konishi, M., 1985, Auditory representation of autogenous song in the song-system of white-crowned sparrows, Proc. Natl. Acad. Sci. USA 82:5997–6000.PubMedGoogle Scholar
  204. Marier, P., and Sherman, V., 1982, Structure in sparrow song without auditory feedback: An emendation of the auditory template hypothesis, J. Neurosci. 3:517–531.Google Scholar
  205. Marier, P., Peters, S., and Wingfield, J., 1987, Correlations between song acquisition, song production, and plasma levels of testosterone and estradiol in sparrows, J. Neurobiol. 18:531–548.Google Scholar
  206. Martin, L. D., 1983, The origin and early radiation of birds, in: Perspectives in Ornithology (A. H. Brash and G. A. Clark, Jr., eds.), Cambridge University Press, London, pp. 291–338.Google Scholar
  207. Maxwell, J. H., and Granda, A. M., 1979, Receptive fields of movement-sensitive cells in the pigeon thalamus, in: Neural Mechanisms of Behavior in the Pigeon (A. M. Granda and J. H. Maxwell, eds.), Plenum Press, New York, pp. 177–197.Google Scholar
  208. Meier, R. E., Mihailovic, J., and Cuenod, M., 1974, Thalamic organization of the retino-thalamohyperstriatal pathway in the pigeon (Columba livia), Exp. Brain Res. 19:351–364.PubMedGoogle Scholar
  209. Miceli, D., and Reperant, J., 1982, Thalamo-hyperstriatal projections in the pigeon (Columba livia) as demonstrated by retrograde double-labeling with fluorescent tracers, Brain Res. 245:365–371.PubMedGoogle Scholar
  210. Miceli, D., Peyrichoux, J., and Reperant, J., 1975, The retino-thalamo-hyperstriatal pathway in the pigeon, Brain Res. 100:125–131.PubMedGoogle Scholar
  211. Miceli, D., Reperant, J., Villalobos, J., and Dionne, L., 1987, Extratelencephalic projections of the avian visual wulst. A quantitative autoradiographic study in the pigeon (Columba livia), J. Hirnforsch. 28:45–57.PubMedGoogle Scholar
  212. Moiseff, A., 1988, Binaural disparity cues available to the barn owl for sound localization, J. Comp. Physiol. 164:629–636.Google Scholar
  213. Moiseff, A., and Konishi, M., 1981a, Neuronal and behavioral sensitivity to binaural time differences in the owl, J. Neurosci. 1:40–48.PubMedGoogle Scholar
  214. Moiseff, A., and Konishi, M., 1981b, The owl’s interaural pathway is not involved in sound localization, J. Comp. Physiol. 144:299–304.Google Scholar
  215. Moiseff, A., and Konishi, M., 1983, Binaural characteristics of units in the owl’s brainstem auditory pathway: Precursors of restricted spatial fields, J. Neurosci. 3:2553–2562.PubMedGoogle Scholar
  216. Müller, C. M., and Leppelsack, H.-J., 1985, Feature extraction and tonotopic organization in the avian auditory forebrain, Exp. Brain Res. 59:587–599.PubMedGoogle Scholar
  217. Müller, S. C., and Scheich, H., 1985, Functional organization of the avian auditory field L, J. Comp. Physiol. 156:1–12.Google Scholar
  218. Mundinger, P. C., 1970, Vocal imitation and individual recognition of finch calls, Science 168:480–482.PubMedGoogle Scholar
  219. Newman, J. D., 1970, Midbrain regions relevant to auditory communication in songbirds, Brain Res. 22:259–261.PubMedGoogle Scholar
  220. Nixdorf, B. E., and Bischof, H. J., 1982, Afferent connections of the ectostriatum and visual wulst in the zebra finch (Taeniopygia guttata castanotis Gould)—An HRP study, Brain Res. 248:9–17.PubMedGoogle Scholar
  221. Nixdorf, B. E., Davis, S. S., and DeVoogd, T. J., 1989, Morphology of Golgi-impregnated neurons in hyperstriatum ventralis, pars caudalis in adult male and female canaries, J. Comp. Neurol. 284:337–349.PubMedGoogle Scholar
  222. Nordeen, K. W., and Nordeen, E. J., 1988, Projection neurons within a vocal motor pathway are born during song learning in zebra finches, Nature 334:149–151.PubMedGoogle Scholar
  223. Nordeen, K. W., Nordeen, E. J., and Arnold, A. P., 1987, Estrogen accumulation in zebra finch song control nuclei: Implications for sexual differentiation and adult activation of song behavior, J. Neurobiol. 18:569–582.PubMedGoogle Scholar
  224. Northcutt, R. G., 1981, Evolution of the telencephalon in non mammals, Annu. Rev. Neurosci. 4:301–350.PubMedGoogle Scholar
  225. Northcutt, R. G., 1984, Anatomical organization of the optic tectum in reptiles, in: Comparative Neurology of the Optic Tectum (H. Vanegas, ed.), Plenum Press, New York, pp. 547–600.Google Scholar
  226. Nottebohm, F., 1971, Neural lateralization of vocal control in a passerine bird. I. Song, J. Exp. Zool. 177:229–261.PubMedGoogle Scholar
  227. Nottebohm, F., 1972, The origins of vocal learning, Am. Nat. 106:116–140.Google Scholar
  228. Nottebohm, F., 1980, Brain pathways for vocal learning in birds: A review of the first 10 years, Prog. Psychobiol. Physiol. Psychol. 9:85–124.Google Scholar
  229. Nottebohm, F., 1981, A brain for all seasons: Cyclical anatomical changes in song control nuclei in the canary brain, Science 194:211–213.Google Scholar
  230. Nottebohm, F., 1985, Neuronal replacement in adulthood. Hope for a new neurology, Ann. N.Y. Acad. Sci. 457:143–161.PubMedGoogle Scholar
  231. Nottebohm, F., 1989, Hormonal regulation of synapses and cell number in the adult canary brain and its relevance to theories of long-term memory storage, in: Neural Control of Reproductive Function, Liss, New York, pp. 583–601.Google Scholar
  232. Nottebohm, F., and Arnold, A. P., 1976, Sexual dimorphism in vocal control areas of the songbird brain, Science 194:211–213.PubMedGoogle Scholar
  233. Nottebohm, F., and Nottebohm, M., 1971, Vocalizations and breeding behaviour of surgically deafened ring doves Streptopelia risoria, Anim. Behav. 19:313–328.PubMedGoogle Scholar
  234. Nottebohm, F., and Nottebohm, M. E., 1978, Relationship between song repertoire and age in the canary, Serinus canarius, Z. Tierpsychol. 46:298–395.Google Scholar
  235. Nottebohm, F., Stokes, T. M., and Leonard, C. M., 1976, Central control of song in the canary, Serinus canarius, J. Comp. Neurol. 165:457–486.PubMedGoogle Scholar
  236. Nottebohm, F., Kasparian, S., and Pandazis, C., 1981, Brain space for a learned task, Brain Res. 213:99–109.PubMedGoogle Scholar
  237. Nottebohm, F., Kelley, D. B., and Paton, J. A., 1982, Connections of vocal control nuclei in the canary telencephalon, J. Comp. Neurol. 207:344–357.PubMedGoogle Scholar
  238. Nottebohm, F., Nottebohm, M. E., and Crane, L., 1986, Developmental and seasonal changes in canary song and their relation to changes in the anatomy of song-control nuclei, Behav. Neural Biol. 46:455–471.Google Scholar
  239. Nowicki, S., 1989, Vocal plasticity in captive black-capped chickadees: The acoustic basis and rate of call convergence, Anim. Behav. 37:64–73.Google Scholar
  240. Nowicki, S., and Marier, P., 1988, How do birds sing? Music Percep. 5:391–426.Google Scholar
  241. Okuhata, S., and Saito, N., 1987, Synaptic connections of thalamo-cerebral vocal nuclei of the canary, Brain Res. Bull. 18:35–44.PubMedGoogle Scholar
  242. Ostrom, J. H., 1974, Archaeopteryx and the origin of flight, Q Rev. Biol. 49:27–47.Google Scholar
  243. Ostrom, J. H., 1976, Archaeopteryx and the origin of birds, Biol. J. Linn. Soc. 8:91–182.Google Scholar
  244. Padian, K., 1986, The Origin of Birds and the Evolution of Flight, California Academy of Sciences, San Francisco.Google Scholar
  245. Palacios, E., 1976, Golgi studies of the telencephalon of the domestic chicken (Gallus domesticus), Anat. Rec. 184:495.Google Scholar
  246. Parent, A., 1986, Comparative Neurobiology of the Basal Ganglia, Wiley, New York.Google Scholar
  247. Parrish, J. M., 1987, The origin of crocodilian locomotion, Paleobiology 13:369–414.Google Scholar
  248. Paton, J. A., and Nottebohm, F., 1984, Neurons born in adult brain are recruited into functional circuits, Science 225:1046–1048.PubMedGoogle Scholar
  249. Paton, J. A., Manogue, K. R., and Nottebohm, F., 1981, Bilateral organization of the vocal control pathway in the budgerigar, Melopsittacus undulatus, J. Neurosci. 1:1279–1288.PubMedGoogle Scholar
  250. Paton, J. A., O’Loughlin, B. E., and Nottebohm, F., 1985, Cells born in adult canary forebrain are local interneurons, J. Neurosci. 5:3088–3093.PubMedGoogle Scholar
  251. Payne, R. S., 1971, Acoustic location of prey by barn owls (Tyto alba), J. Exp. Biol. 54:535–573.PubMedGoogle Scholar
  252. Pearson, R., 1972, The Avian Brain, Academic Press, New York.Google Scholar
  253. Pepperberg, I. M., 1983, Cognition in the African grey parrot: Preliminary evidence for auditory/vocal comprehension of the class concept, Anim. Learn. Behav. 11:179–185.Google Scholar
  254. Pepperberg, I. M., 1987, Evidence for conceptual quantitative abilities in the African grey parrot: Labeling of cardinal sets, Ethology 75:37–61.Google Scholar
  255. Pepperberg, I. M., 1988, The importance of social interaction and observation in the acquisition of communicative competence: Possible parallels between avian and human learning, in: Social Learning: Psychological and Biological Perspectives (T. R. Zentall and B. G. Galef, Jr., eds), Erlbaum, Hillsdale, N. J., pp. 279–299.Google Scholar
  256. Perisic, M., Mihailovic, J., and Cuenod, M., 1971, Electrophysiology of contralateral and ipsilateral visual projections to the Wulst in pigeon (Columba livia), Int. J. Neurosci. 2:7–14.PubMedGoogle Scholar
  257. Pettigrew, J. D., 1979, Binocular visual processing in the owl’s telencephalon, Proc. R. Soc. London Ser. B 204:435–454.Google Scholar
  258. Pettigrew, J. D., 1986, The evolution of binocular vision, in: Visual Neuroscience (J. D. Pettigrew, K.J. Sanderson, and W. R. Levick, eds.), Cambridge University Press, London, pp. 208–222.Google Scholar
  259. Pettigrew, J. D., and Konishi, M., 1976, Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba), Science 193:675–678.PubMedGoogle Scholar
  260. Pooley, A. C., and Gans, C., 1976, The Nile crocodile, Sci. Am. 234:114–124.PubMedGoogle Scholar
  261. Portman, A., and Stingelin, W., 1961, The central nervous system, in: Biology and Comparative Physiology of Birds, Volume 2 (A. J. Marshall, ed.), Academic Press, New York, pp. 1–36.Google Scholar
  262. Potash, L. M., 1970, Vocalizations elicited by brain stimulation in Coturnix coturnix japonica, Behaviour 36:149–167.PubMedGoogle Scholar
  263. Ramony Cajal, S., 1955, Histologie du système nerveux de l’homme et des vertébrés. Consejo superior de investigaciones cientificas, Instituto Ramón y Cajal, Madrid.Google Scholar
  264. Regal, P. J., 1975, The evolutionary origin of feathers, Quart, Rev. Biol. 50:35–66.Google Scholar
  265. Rehkamper, G., Zilles, K., and Schleicher, A., 1984, A quantitative approach to cytoarchitectonics. IV. The areal pattern of the hyperstriatum ventrale in the domestic pigeon, Columba livia, Anat. Embryol. 169:319–327.PubMedGoogle Scholar
  266. Rehkamper, G., Zilles, K., and Schleicher, A., 1985, A quantitative approach to cytoarchitectonics. X. The areal pattern of the neostriatum in the domestic pigeon, Columba livia. A cyto-and myeloarchitectonical study, Anat. Embryol. 171:345–355.PubMedGoogle Scholar
  267. Reiner, A., and Karten, H. J., 1982, Cells of origin of descending tectofugal pathways in the pigeon (Columba livia), J. Comp. Neurol. 204:165–187.PubMedGoogle Scholar
  268. Reiner, A., and Karten, H. J., 1983, The laminar source of efferent projections from the avian wulst, Brain Res. 275:349–354.PubMedGoogle Scholar
  269. Reiner, A., and Karten, H. J., 1985, Comparison of olfactory bulb projections in pigeons and turtles, Brain Behav. Evol. 27:11–27.PubMedGoogle Scholar
  270. Reiner, A., Brecha, N., and Karten, H. J., 1979, A specific projection of retinal displaced ganglion cells to the nucleus of the basal optic root in the chicken, Neuroscience 4:1679–1688.PubMedGoogle Scholar
  271. Reiner, A., Brecha, N. C., and Karten, H. J., 1982a, Basal ganglia pathways to the tectum: The afferent and efferent connections of the lateral spiriform nucleus of pigeons, J. Comp. Neurol. 208:16–36.PubMedGoogle Scholar
  272. Reiner, A., Karten, H. J., and Brecha, N. C., 1982b, Enkephalin-mediated basal ganglia influences over the optic tectum: Immunohistochemistry of the tectum and the lateral spiriform nucleus in pigeons, J. Comp. Neurol. 208:37–53.PubMedGoogle Scholar
  273. Reiner, A., Karten, H. J., and Solina, A. R., 1983, Substance P: Localization within paleostriatal-tegmental pathways in the pigeon, Neuroscience 9:61–85.PubMedGoogle Scholar
  274. Reiner, A., Davis, B. M., Brecha, N. C., and Karten, H. J., 1984a, The distribution of enkephalin-like immunoreactivity in the telencephalon of the adult and developing domestic chicken, J. Comp. Neurol. 228:245–262.PubMedGoogle Scholar
  275. Reiner, A., Brauth, S. E., and Karten, H. J., 1984b, Evolution of the amniote basal ganglia, Trends Neurosci. 7:320–325.Google Scholar
  276. Reperant, J., 1973, Nouvelles donnees sur les projections visuelles chez le pigeon (Columba livia), J. Hirnforsch. 14:152–287.Google Scholar
  277. Reperant, J., Raffin, J.-P., and Miceli, D., 1974, La voie retino-thalamo-hyper-striatale chez le poussin (Gallus domesticus L), C.R. Acad. Sci. 279:279–282.Google Scholar
  278. Revzin, A. M., 1969, A specific visual projection area in the hyperstriatum of the pigeon, Brain Res. 15:246–249.PubMedGoogle Scholar
  279. Rio, J. P., Villalobos, J., Miceli, D., and Reperant, J., 1983, Efferent projections of the visual wulst upon the nucleus of the basal optic root in the pigeon, Brain Res. 271:145–151.PubMedGoogle Scholar
  280. Ritchie, T. C., 1979, Intratelencephalic visual connections and their relationship to the archistriatum in the pigeon (Columba livia), Ph.D. thesis, University of Virginia, Charlottesville.Google Scholar
  281. Rose, M., 1914, Uber die cytoarchitektonische Gliederung des Vorderhirns der Vogel, J. Psychol. Neurol 21:278–352.Google Scholar
  282. Rübsamen, R., and Dörrscheidt, G. J., 1986, Tonotopic organization of the auditory forebrain in a songbird, the European starling, J. Comp. Physiol. 158:639–646.Google Scholar
  283. Saini, K. D., and Leppelsack, H.-J., 1977, Neuronal arrangement in the auditory field L of the neostriatum of the starling, Cell Tissue Res. 176:309–316.PubMedGoogle Scholar
  284. Saini, K. D., and Leppelsack, H.-J., 1981, Cell types of the auditory caudomedial neostriatum of the starling (Sturnus vulgaris), J. Comp. Neurol. 198:209–230.PubMedGoogle Scholar
  285. Sanz, J. L., Bonaparte, J. F., and Lacasa, A., 1988, Unusual early Cretaceous birds from Spain, Nature 331:433–435.Google Scholar
  286. Scharaff, C., and Nottebohm, F., 1989, Lesions in area X affect song in juvenile but not adult male zebra finches, Soc. Neurosci. Abstr. 15:618.Google Scholar
  287. Scheich, H., Bonke, B. A., and Langner, G., 1979a, Functional organization of some auditory nuclei in the guinea fowl demonstrated by the 2-deoxyglucose technique, Cell Tissue Res. 204:17–27.PubMedGoogle Scholar
  288. Scheich, H., Langner, G., and Bonke, D., 1979b, Responsiveness of units in the auditory neostriatum of the guinea fowl (Numida meleagris) to species-specific calls and synthetic stimuli. II. Discrimination of iambus-like calls, J. Comp. Physiol. 132:257–276.Google Scholar
  289. Schwarzkopff, J., 1952, Untersuchungen uber die Arbeitsweise des Mittelohres und das Richtungshoren der Singvogel unter Verwendung von Choclea-Potentialen, Z. Vgl. Physiol. 34:46–68.Google Scholar
  290. Seller, T. J., 1980, Midbrain regions involved in call production in Java sparrows, Behav. Brain Res. 1:257–265.PubMedGoogle Scholar
  291. Simpson, G. G., 1980, Fossil birds in evolution, in: Papers in Avian Paleontology, Contrib. Sci. Nat. Hist. Mus. Los Angeles County 330:3–8.Google Scholar
  292. Simpson, H. B., and Vicario, D. S., 1990, Brain pathways for learned and unlearned vocalizations differ in zebra finches, J. Neurosci 10:1541–1556.PubMedGoogle Scholar
  293. Skeen, L. C., Pindzola, R. R., and Schofield, B. R., 1984, Tangential organization of olfactory, association, and commissural projections to olfactory cortex in a species of reptile (Trionyx spiniferus), bird (Aix sponsa), and mammal (Tupaia glis), Brain Behav. Evol. 25:206–216.PubMedGoogle Scholar
  294. Smith, C. A., Konishi, M., and Schuff, N., 1985, Structure of the barn owl’s (Tyto alba) inner ear, Hearing Res. 17:237–247.Google Scholar
  295. Snow, D. W., 1968, The singing assemblies of Little Hermits, Living Bird 3:47–55.Google Scholar
  296. Sohrabji, R., Nordeen, W. J., and Nordeen, K. W., 1989, Selective impairment of song development in zebra finches following lesions of the song control nucleus, area X, Soc. Neurosci. Abstr. 15:681.Google Scholar
  297. Steeves, J. D., Sholomenko, G. N., and Webster, D. M. S., 1987, Stimulation of the pontomedullary reticular formation initiates locomotion in decerebrate birds, Brain Res. 401:205–212.PubMedGoogle Scholar
  298. Stein, P. S. G., and Grossman, M. L., 1980, Central program for scratch reflex in turtle, J. Comp. Physiol. 140:287–294.Google Scholar
  299. Stingelin, W., 1958, Vergleichend morphologische Untersuchungen am Vorderhin der Vogel auf cytologischer und cytoarchitektonischer Grundlage, Helbing & Lichtenhahn, Basal.Google Scholar
  300. Streit, P., Burkhalter, A., Stella, M., and Cuenod, M., 1980, Patterns of activity in pigeon brain’s visual relays as revealed by the [14C]-2-deoxyglucose method, Neuroscience 5:1053–1066.PubMedGoogle Scholar
  301. Sullivan, W. E., and Konishi, M., 1984, Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl, J. Neurosci. 47:1787–1799.Google Scholar
  302. Sullivan, W. E., and Konishi, M., 1986, Neural map of interaural phase difference in the owl’s brainstem, Proc. Natl. Acad. Sci. USA 83:8400–8404.PubMedGoogle Scholar
  303. Suthers, R. A., 1989, Respiratory dynamics and vocal asymmetry in birdsong, in: 2nd International Congress of Neuroethology (J. Erber, R. Menzal, H.-J. Pflüger, and D. Todt, eds.), Thieme, Stuggart.Google Scholar
  304. Takahashi, T., and Konishi, M., 1986, Selectivity of interaural time difference in the owl’s midbrain, J. Neurosci. 6:3413–3422.PubMedGoogle Scholar
  305. Takahashi, TT, and Konishi, M., 1988a, Projections of the nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl, J. Comp. Neurol. 274:212–238.PubMedGoogle Scholar
  306. Takahashi, T. T., and Konishi, M., 1988b, Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn own, J. Comp. Neurol. 274:190–211.PubMedGoogle Scholar
  307. Takahashi, T. T., Wagner, H., and Konishi, M., 1989, Role of commissural projections in the representation of bilateral auditory space in the barn owl’s inferior colliculus, J. Comp. Neurol. 281:545–554.PubMedGoogle Scholar
  308. ten Cate, J., 1960, Locomotor movements in the spinal pigeon, J. Exp. Biol. 37:609–613.Google Scholar
  309. ten Donkelaar, H. J., 1990, The cerebellum, in: Biology of the Reptilia (C. G. Gans and P. S. Ulinski, eds.), University of Chicago Press, Chicago, in press.Google Scholar
  310. ten Donkelaar, H. J., and de Boer-van Huizen, R., 1981, Ascending projections of the brain stem reticular formation in a non mammalian vertebrate (the lizard Varanus exanthematicus), with notes on the afferent connections of the forebrain, J. Comp. Neurol. 200:501–528.PubMedGoogle Scholar
  311. ten Donkelaar, H. J., Bangma, G. C., Barbas-Henry, H. A., de Boer-van Huizen, R., and Wolters, J. G., 1987, The brain stem in a lizard, Varanus exanthematicus, Adv. Anat. Embryol. Cell Biol. 107:1–168.PubMedGoogle Scholar
  312. Theurick, M., Muller, C. M., and Scheich, H., 1984, 2-Deoxyglucose accumulation parallels extra-cellularly recorded spike activity in the avian auditory neostriatum, Brain Res. 322:157–161.Google Scholar
  313. Tombol, T., Csillag, S., and Stewart, M. G., 1988a, Cell types of the hyperstriatum ventrale of the domestic chicken (Gallus domesticus): A Golgi study, J. Hirnforsch. 29:319–334.PubMedGoogle Scholar
  314. Tombol, T., Csillag, A., and Stewart, M. G., 1988b, Cell types of the paleostriatal complex of the domestic chicken (Gallus domesticus): A Golgi study, J. Hirnforsch. 29:493–507.PubMedGoogle Scholar
  315. Tombol, T., Magloczky, Z., and Csillag, A., 1988c, The structure of the chicken ectostriatum. I. Golgi study, J. Hirnforsch. 29:525–546.PubMedGoogle Scholar
  316. Tsai, H. M., Garber, B. B., and Larramendi, L. M. H., 1981a, Thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: I. Neuronal birthdates of telencephalic compartments in situ, J. Comp. Neurol. 198:275–292.PubMedGoogle Scholar
  317. Tsai, H. M., Garber, B. B., and Larramendi, L. M. H., 1981b, Thymidine autoradiographic analysis of telencephalic histogenesis in the chick embryo: II. Dynamics of neuronal migration, displacement, and aggregation, J. Comp. Neurol. 198:293–306.PubMedGoogle Scholar
  318. Ulinski, P. S., 1983, Dorsal Ventricular Ridge, Wiley, New York.Google Scholar
  319. Ulinski, P. S., 1986, Organization of corticogeniculate projections in the turtle, Pseudemys scripta, J. Comp. Neurol. 254:529–542.PubMedGoogle Scholar
  320. Ulinski, P. S., 1988, Functional architecture of turtle visual cortex, in: The Forebrain of Reptiles (W. A. K. Schwerdtfeger and W. J. A. J. Smeets, eds.), Karger, Basel, pp. 151–161.Google Scholar
  321. Ulinski, P. S., 1989, Neuronal organization of striatum in the alligator, Alligator mississippiensis, in: Comparative Aspects of the Structure and Development of the Forebrain in Lower Vertebrates (W. K. Schwerdtfeger and W. J. A. J. Smeets, eds.), Springer, Berlin.Google Scholar
  322. Ulinski, P. S., and Nautiyal, J., 1988, Organization of retinogeniculate projections in turtles of the genera Pseudemys and Chrysemys, J. Comp. Neurol. 276:92–112.PubMedGoogle Scholar
  323. Ulinski, P. S., Dacey, D. M., and Sereno, M. I., 1990, Optic tectum, in: Biology of the Reptilia, Volume 17 (C. G. Gans and P. S. Ulinski, eds.), University of Chicago Press, Chicago, in press.Google Scholar
  324. Veenman, C. L., and Gottschaldt, K. M., 1986, The nucleus basalis-neostriatum complex in the goose (Anser anser L.), Adv. Anat. Embryol. Cell Biol. 96:1–85.PubMedGoogle Scholar
  325. Vicario, D. S., and Nottebohm, F., 1988, Organization of the zebra finch song control system: I. Representation of syringeal muscles in the hypoglossal nucleus, J. Comp. Neurol. 271:346–354.PubMedGoogle Scholar
  326. Vicario, D. S., and Simpson, H. B., 1988, Control of syringeal muscles in nucleus RA of zebra finches, Soc. Neurosci. Abstr. 14:89.Google Scholar
  327. Viohl, G., 1985, Geology of the Sohnofen lithographic limestone and the habitat of Archaeopteryx, in: The Beginnings of Birds (M. K. Hecht, J. H. Ostrom, G. Viohl, and P. Wellnhoffer, eds.), Freunde des Jura-Museums Eichstatt, Eichstatt, pp. 31–44.Google Scholar
  328. Vogt-Nilsen, L., 1954, The inferior olive in birds. A comparative morphological study, J. Comp. Neurol. 101:447–481.PubMedGoogle Scholar
  329. Volman, S. F., and Konishi, M., 1987, Auditory selectivity in the song-control nucleus HVc appears with the onset of plastic song, Soc. Neurosci. Abstr. 13:870.Google Scholar
  330. Volman, S. F., and Konishi, M., 1988, Comparative physiology of auditory localization in owls, Soc. Neurosci Abstr. 14:322.Google Scholar
  331. Wagner, H., Takahashi, T., and Konishi, M., 1987, Representation of interaural time difference in the central nucleus of the barn owl’s inferior colliculus, J. Neurosci. 7:3105–3116.PubMedGoogle Scholar
  332. Walker, C. A., 1973, The origins of owls, in: Owls of the World (J. A. Burton, ed.), Dutton, New York, pp. 27–33.Google Scholar
  333. Watanabe, M., Ito, H., and Masai, H., 1983, Cytoarchitecture and visual receptive neurons in the wulst of the Japanese quail (Coturnix coturnix japonica), J. Comp. Neurol. 213:188–198.PubMedGoogle Scholar
  334. Webster, D. M. S., and Steeves, J. D., 1988, Origins of brainstem-spinal projections in the duck and goose, J. Comp. Neurol. 273:573–583.PubMedGoogle Scholar
  335. Weiss, S. R. B., and Hodos, W., 1986, Discrimination of mirror-image stimuli after lesions of the visual system in pigeons, Brain Behav. Evol. 29:207–222.PubMedGoogle Scholar
  336. Wellnhofer, P., 1974, Das funfte Skelettexemplar von Archaeopteryx, Beitr. Naturgesch. Vorzeit Abt. A 147:169–216.Google Scholar
  337. Wellnhoffer, P., 1988, A new specimen of Archaeopteryx, Science 240:1790–1792.Google Scholar
  338. Wellnhoffer, P., 1990, Archaeopteryx, Sci. Amer. 262:70–77.Google Scholar
  339. Whitlock, D. G., 1952, A neurohistological and neurophysiological study of afferent fiber tracts and receptive areas of the avian cerebellum, J. Comp. Neurol. 97:567–623.PubMedGoogle Scholar
  340. Wild, J. M., Arends, J. J. A., and Zeigler, H. P., 1984, A trigeminal sensorimotor circuit for pecking, grasping and feeding in the pigeon (Columba livia), Brain Res. 300:146–151.PubMedGoogle Scholar
  341. Wild, J. M., Arends, J. A. A., and Zeigler, H. P., 1985, Telencephalic connections of the trigeminal system in the pigeon (Columba livia): A trigeminal sensorimotor circuit, J. Comp. Neurol. 234:441–464.PubMedGoogle Scholar
  342. Wiley, E. O., 1981, Phylogenetics: The Theory and Practice of Phylogenetic Systematics, Wiley, New York.Google Scholar
  343. Williams, H., and Nottebohm, F., 1985, Auditory responses in avian vocal motor neurons: A motor theory for song perception in birds, Science 229:279–282.PubMedGoogle Scholar
  344. Wilson, P., 1980a, The organization of the visual hyperstriatum in the domestic chick. I. Topology and topography of the visual projection, Brain Res. 188:319–332.PubMedGoogle Scholar
  345. Wilson, P., 1980b, The organization of the visual hyperstriatum in the domestic chick. II. Receptive field properties of single units, Brain Res. 188:333–345.PubMedGoogle Scholar
  346. Witkovsky, P., Zeigler, H. P., and Silve, R., 1973, The nucleus basalis of the pigeon: A single-unit analysis, J. Comp. Neurol. 147:119–128.PubMedGoogle Scholar
  347. Zeier, H., and Karten, H. J., 1971, The archistriatum of the pigeon: Organization of afferent and efferent connections, Brain Res. 31:313–326.PubMedGoogle Scholar
  348. Zeigler, H. P., 1974, Feeding behavior in the pigeon: A neurobehavioral analysis, in: Birds: Brain and Behavior (I. J. Goodman and M. W. Schein, eds.), Academic Press, New York, pp. 101–132.Google Scholar
  349. Zeigler, H. P., 1976, Feeding behavior of the pigeon (Columba livia), Adv. Study Behav. 7:285–389.Google Scholar
  350. Zeigler, H. P., and Karten, H. J., 1973, Brain mechanism and feeding behavior in the pigeon (Columba livia). II. Analysis of feeding behavior deficits after lesions of the quintofrontal structures, J. Comp. Neurol. 152:83–102.PubMedGoogle Scholar
  351. Zeigler, H. P., Levitt, P. W., and Levine, R. R., 1980, Eating in the pigeon (Columba livia): Movement patterns, stereotypy, and stimulus control, J. Comp. Physiol. Psychol. 94:783–794.Google Scholar
  352. Zeier, H., 1971, Behavioral adaptation on operant schedules after forebrain lesions in the pigeon, in: Birds: Brain and Behavior (I. J. Goodman and M. W. Schein, eds.), Academic Press, New York, pp. 153–164.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Philip S. Ulinski
    • 1
  • Daniel Margoliash
    • 2
  1. 1.Department of Organismal Biology and Anatomy, and Committee on NeurobiologyUniversity of ChicagoChicagoUSA
  2. 2.Department of Organismal Biology and Anatomy, and Committees on Neurobiology and BiopsychologyUniversity of ChicagoChicagoUSA

Personalised recommendations